Eigenvalues for a class of singular problems involving p(x)-Biharmonic operator and q(x)-Hardy potential

2019 ◽  
Vol 9 (1) ◽  
pp. 1130-1144 ◽  
Author(s):  
Abdelouahed El Khalil ◽  
Mohamed Laghzal ◽  
My Driss Morchid Alaoui ◽  
Abdelfattah Touzani

Abstract In this paper, we consider the nonlinear eigenvalue problem: $$\begin{array}{} \displaystyle \begin{cases} {\it\Delta}(|{\it\Delta} u|^{p(x)-2}{\it\Delta} u)= \lambda \frac{|u|^{q(x)-2}u}{{\delta(x)}^{2q(x)}} \;\; \mbox{in}\;\; {\it\Omega}, \\ u\in W_0^{2,p(x)}({\it\Omega}), \end{cases} \end{array}$$ where Ω is a regular bounded domain of ℝN, δ(x) = dist(x, ∂Ω) the distance function from the boundary ∂Ω, λ is a positive real number, and functions p(⋅), q(⋅) are supposed to be continuous on Ω satisfying $$\begin{array}{} \displaystyle 1 \lt \min_{\overline{{\it\Omega} }}\,q\leq \max_{\overline{{\it\Omega}}}\,q \lt \min_{\overline{{\it\Omega} }}\,p \leq \max_{\overline{{\it\Omega}}}\,p \lt \frac{N}{2} \mbox{ and } \max_{\overline{{\it\Omega}}}\,q \lt p_2^*:= \frac{Np(x)}{N-2p(x)} \end{array}$$ for any x ∈ Ω. We prove the existence of at least one non-decreasing sequence of positive eigenvalues. Moreover, we prove that sup Λ = +∞, where Λ is the spectrum of the problem. Furthermore, we give a proof of positivity of inf Λ > 0 provided that Hardy-Rellich inequality holds.

2014 ◽  
Vol 16 (04) ◽  
pp. 1350046 ◽  
Author(s):  
B. Barrios ◽  
M. Medina ◽  
I. Peral

The aim of this paper is to study the solvability of the following problem, [Formula: see text] where (-Δ)s, with s ∈ (0, 1), is a fractional power of the positive operator -Δ, Ω ⊂ ℝN, N > 2s, is a Lipschitz bounded domain such that 0 ∈ Ω, μ is a positive real number, λ < ΛN,s, the sharp constant of the Hardy–Sobolev inequality, 0 < q < 1 and [Formula: see text], with αλ a parameter depending on λ and satisfying [Formula: see text]. We will discuss the existence and multiplicity of solutions depending on the value of p, proving in particular that p(λ, s) is the threshold for the existence of solution to problem (Pμ).


2018 ◽  
Vol 20 (07) ◽  
pp. 1750074
Author(s):  
Marian Bocea ◽  
Mihai Mihăilescu

In this paper, the minimization problem [Formula: see text] where [Formula: see text] is studied when [Formula: see text] ([Formula: see text]) is an open, bounded, convex domain with smooth boundary and [Formula: see text]. We show that [Formula: see text] is either zero, when the maximum of the distance function to the boundary of [Formula: see text] is greater than [Formula: see text], or it is a positive real number, when the maximum of the distance function to the boundary of [Formula: see text] belongs to the interval [Formula: see text]. In the latter case, we provide estimates for [Formula: see text] and show that for [Formula: see text] sufficiently large [Formula: see text] coincides with the principal frequency of the [Formula: see text]-Laplacian in [Formula: see text]. Some particular cases and related problems are also discussed.


2010 ◽  
Vol 52 (3) ◽  
pp. 517-527 ◽  
Author(s):  
MIHAI MIHĂILESCU ◽  
GHEORGHE MOROŞANU

AbstractWe study the eigenvalue problem $\(-\sum_{i=1}^N\di\partial_{x_i}(|\di\partial_{x_i}u |^{p_i(x)-2}\di\partial_{x_i}u)$ = λ|u|q(x)−2u in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN with smooth boundary ∂Ω, λ is a positive real number, and p1,⋅ ⋅ ⋅, pN, q are continuous functions satisfying the following conditions: 2 ≤ pi(x) < N, 1 < q(x) for all x ∈ Ω, i ∈ {1,. . .,N}; there exist j, k ∈ {1,. . .,N}, j ≠ k, such that pj ≡ q in Ω, q is independent of xj and maxΩq < minΩpk. The main result of this paper establishes the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that every λ ∈(λ1, ∞) is an eigenvalue, while no λ ∈ (0, λ0) can be an eigenvalue of the above problem.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


2020 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
Gholamreza H. Mehrabani ◽  
Kourosh Nourouzi

AbstractDiversities are a generalization of metric spaces which associate a positive real number to every finite subset of the space. In this paper, we introduce ultradiversities which are themselves simultaneously diversities and a sort of generalization of ultrametric spaces. We also give the notion of spherical completeness for ultradiversities based on the balls defined in such spaces. In particular, with the help of nonexpansive mappings defined between ultradiversities, we show that an ultradiversity is spherically complete if and only if it is injective.


1989 ◽  
Vol 26 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γn(p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 < p < 1. Denote by ρ n(s) the number of vertices in the union of all those components of Γn(p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n(s) and the limit distribution of ρ n(s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


Author(s):  
MARTIN BUNDER ◽  
PETER NICKOLAS ◽  
JOSEPH TONIEN

For a positive real number $t$ , define the harmonic continued fraction $$\begin{eqnarray}\text{HCF}(t)=\biggl[\frac{t}{1},\frac{t}{2},\frac{t}{3},\ldots \biggr].\end{eqnarray}$$ We prove that $$\begin{eqnarray}\text{HCF}(t)=\frac{1}{1-2t(\frac{1}{t+2}-\frac{1}{t+4}+\frac{1}{t+6}-\cdots \,)}.\end{eqnarray}$$


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Vichian Laohakosol ◽  
Suton Tadee

A theorem of Dubickas, affirming a conjecture of Kuba, states that a nonzero algebraic number is a root of a polynomial f with positive rational coefficients if and only if none of its conjugates is a positive real number. A certain quantitative version of this result, yielding a growth factor for the coefficients of f similar to the condition of the classical Eneström-Kakeya theorem of such polynomial, is derived. The bound for the growth factor so obtained is shown to be sharp for some particular classes of algebraic numbers.


1989 ◽  
Vol 26 (01) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γ n (p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 &lt; p &lt; 1. Denote by ρ n (s) the number of vertices in the union of all those components of Γ n (p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n (s) and the limit distribution of ρ n (s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


1994 ◽  
Vol 87 (3) ◽  
pp. 161-170
Author(s):  
James R. Rahn ◽  
Barry A. Berndes

Power functions and exponential functions often describe the relationship between variables in physical phenomena. Power functions are equations of the form y = kxn (see fig. 1), where k is a nonzero real number and n is a nonzero real number not equal to 1. Exponential functions are equations of the form y = kbx (see fig. 2), where k is a nonzero real number and b is a positive real number. Students should be able visually to recognize these functions so that they can easily identify their appearance when experimental data are graphed. When physical phenomena appear to describe exponential and power functions, logarithms can be used to locate approximate functions that represent the phenomena.


Sign in / Sign up

Export Citation Format

Share Document