scholarly journals Asymptotic Behavior of the Steklov Eigenvalues For the p−Laplace Operator

2007 ◽  
Vol 7 (3) ◽  
Author(s):  
Juan Pablo Pinasco

AbstractIn this paper we study the asymptotic behavior of the Steklov eigenvalues of the p- Laplacian. We show the existence of lower and upper bounds of a Weyl-type expansion of the function N(λ) which counts the number of eigenvalues less than or equal to λ, and we derive from them asymptotic bounds for the eigenvalues.

2000 ◽  
Vol 32 (01) ◽  
pp. 244-255 ◽  
Author(s):  
V. Dumas ◽  
A. Simonian

We consider a fluid queue fed by a superposition of a finite number of On/Off sources, the distribution of the On period being subexponential for some of them and exponential for the others. We provide general lower and upper bounds for the tail of the stationary buffer content distribution in terms of the so-called minimal subsets of sources. We then show that this tail decays at exponential or subexponential speed according as a certain parameter is smaller or larger than the ouput rate. If we replace the subexponential tails by regularly varying tails, the upper bound and the lower bound are sharp in that they differ only by a multiplicative factor.


2020 ◽  
Vol 34 (27) ◽  
pp. 2050249
Author(s):  
Shu-Chiuan Chang ◽  
Robert Shrock

We calculate exponential growth constants [Formula: see text] and [Formula: see text] describing the asymptotic behavior of spanning forests and connected spanning subgraphs on strip graphs, with arbitrarily great length, of several two-dimensional lattices, including square, triangular, honeycomb, and certain heteropolygonal Archimedean lattices. By studying the limiting values as the strip widths get large, we infer lower and upper bounds on these exponential growth constants for the respective infinite lattices. Since our lower and upper bounds are quite close to each other, we can infer very accurate approximate values for these exponential growth constants, with fractional uncertainties ranging from [Formula: see text] to [Formula: see text]. We show that [Formula: see text] and [Formula: see text] are monotonically increasing functions of vertex degree for these lattices.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Huyuan Chen ◽  
Laurent Véron

Abstract We provide bounds for the sequence of eigenvalues { λ i ⁢ ( Ω ) } i {\{\lambda_{i}(\Omega)\}_{i}} of the Dirichlet problem L Δ ⁢ u = λ ⁢ u ⁢  in  ⁢ Ω , u = 0 ⁢  in  ⁢ ℝ N ∖ Ω , L_{\Delta}u=\lambda u\text{ in }\Omega,\quad u=0\text{ in }\mathbb{R}^{N}% \setminus\Omega, where L Δ {L_{\Delta}} is the logarithmic Laplacian operator with Fourier transform symbol 2 ⁢ ln ⁡ | ζ | {2\ln\lvert\zeta\rvert} . The logarithmic Laplacian operator is not positively defined if the volume of the domain is large enough. In this article, we obtain the upper and lower bounds for the sum of the first k eigenvalues by extending the Li–Yau method and Kröger’s method, respectively. Moreover, we show the limit of the quotient of the sum of the first k eigenvalues by k ⁢ ln ⁡ k {k\ln k} is independent of the volume of the domain. Finally, we discuss the lower and upper bounds of the k-th principle eigenvalue, and the asymptotic behavior of the limit of eigenvalues.


2000 ◽  
Vol 32 (1) ◽  
pp. 244-255 ◽  
Author(s):  
V. Dumas ◽  
A. Simonian

We consider a fluid queue fed by a superposition of a finite number of On/Off sources, the distribution of the On period being subexponential for some of them and exponential for the others. We provide general lower and upper bounds for the tail of the stationary buffer content distribution in terms of the so-called minimal subsets of sources. We then show that this tail decays at exponential or subexponential speed according as a certain parameter is smaller or larger than the ouput rate. If we replace the subexponential tails by regularly varying tails, the upper bound and the lower bound are sharp in that they differ only by a multiplicative factor.


10.37236/4644 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Balázs Patkós

The problem of determining the maximum size $La(n,P)$ that a $P$-free subposet of the Boolean lattice $B_n$ can have, attracted the attention of many researchers, but little is known about the induced version of these problems. In this paper we determine the asymptotic behavior of $La^*(n,P)$, the maximum size that an induced $P$-free subposet of the Boolean lattice $B_n$ can have for the case when $P$ is the complete two-level poset $K_{r,t}$ or the complete multi-level poset $K_{r,s_1,\dots,s_j,t}$ when all $s_i$'s either equal 4 or are large enough and satisfy an extra condition. We also show lower and upper bounds for the non-induced problem in the case when $P$ is the complete three-level poset $K_{r,s,t}$. These bounds determine the asymptotics of $La(n,K_{r,s,t})$ for some values of $s$ independently of the values of $r$ and $t$.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


Sign in / Sign up

Export Citation Format

Share Document