Two optical sensing elements for H2O and NO2 gas sensing based on the single plasmonic – photonic crystal slab

2020 ◽  
Vol 9 (4) ◽  
pp. 203-208 ◽  
Author(s):  
Anton I. Ignatov ◽  
Alexander M. Merzlikin

AbstractTwo optical sensing elements based on the surface plasmon waves at the plasmonic-photonic-crystal/air interface, excited in the Kretschmann configuration, are proposed. The sensing elements are designed to detect air humidity and NO2 concentration in air. The angular reflectance spectra of the sensing elements are theoretically analyzed as the function of the analyte concentration. The proposed NO2-sensing element has no cross-sensitivity to humidity. The two sensing elements are based on the same multilayer metal-dielectric structure with the only exception on different gas-sensitive material layers. When combined, the sensing elements can be used to measure humidity and NO2 concentration in humid air.

2013 ◽  
Vol 46 (12) ◽  
pp. 125107 ◽  
Author(s):  
A V Baryshev ◽  
A M Merzlikin ◽  
M Inoue

2019 ◽  
Vol 12 (12) ◽  
pp. 125002 ◽  
Author(s):  
Suxia Xie ◽  
Changzhong Xie ◽  
Song Xie ◽  
Jie Zhan ◽  
Zhijian Li ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 72 ◽  
Author(s):  
Da-Quan Yang ◽  
Bing Duan ◽  
Xiao Liu ◽  
Ai-Qiang Wang ◽  
Xiao-Gang Li ◽  
...  

The ability to detect nanoscale objects is particular crucial for a wide range of applications, such as environmental protection, early-stage disease diagnosis and drug discovery. Photonic crystal nanobeam cavity (PCNC) sensors have attracted great attention due to high-quality factors and small-mode volumes (Q/V) and good on-chip integrability with optical waveguides/circuits. In this review, we focus on nanoscale optical sensing based on PCNC sensors, including ultrahigh figure of merit (FOM) sensing, single nanoparticle trapping, label-free molecule detection and an integrated sensor array for multiplexed sensing. We believe that the PCNC sensors featuring ultracompact footprint, high monolithic integration capability, fast response and ultrahigh sensitivity sensing ability, etc., will provide a promising platform for further developing lab-on-a-chip devices for biosensing and other functionalities.


2004 ◽  
Author(s):  
W. H. Zheng ◽  
P. Reece ◽  
M. Gal

Author(s):  
Wanhua Zheng ◽  
Mingxin Xing ◽  
Wei Chen ◽  
Wenjun Zhou ◽  
Anjin Liu ◽  
...  

2012 ◽  
Vol 26 (26) ◽  
pp. 1250170 ◽  
Author(s):  
TAO CHEN ◽  
CAILONG ZHENG ◽  
JINXING LI

We present a procedure to enhance the transmission efficiency of a photonic crystal slab waveguide bend by introducing an air hole with the same radius at the center of bend and optimizing the positions of three neighboring holes in the corner. The improvement relies only on the method of displacing holes which is technologically preferred to controlling variations in hole size or shape. We employ the effective refractive index approach and two-dimensional plane wave expansion method to analyze the guide modes of the straight waveguide and waveguide bend. The transmission character of bent waveguides is investigated using two-dimensional finite-difference time-domain method. Numerical studies demonstrate that the approximate method of mode analysis is unsuitable to our model. Alternatively, we systematically study the effect of different positions of the holes on the transmission. The optimized bends for the high transmission with broad bandwidth are proposed.


Sign in / Sign up

Export Citation Format

Share Document