Game Theory Based Radio Resource Management Algorithm for Packet Access Cellular Networks

Author(s):  
Mihály Varga ◽  
Zsolt Alfréd Polgár

AbstractThe goal of Radio Resource Management (RRM) mechanisms is to allocate the transmission resources to the users such that the transmission requests are satisfied while several constraints are fulfilled. These constraints refer to low complexity and power consumption and high spectral efficiency and can be met by multidimensional optimization. This paper proposes a Game Theory (GT) based suboptimal solution to this multidimensional optimization problem. The results obtained by computer simulations show that the proposed RRM algorithm brings significant improvement in what concerns the average delay and the throughput, compared to other RRM algorithms, at the expense of somewhat increased complexity.

Author(s):  
Yingxia Shao ◽  
Hailin Jiang ◽  
Hongli Zhao

AbstractTrain-to-wayside (T2W) and train-to-train (T2T) communication modes may coexist in future train-centric communication-based train control (CBTC) systems. The feasibility of T2T communication in urban rail transit is analyzed first. Referring to the device-to-device (D2D) communication scenario in the general cellular network, this paper establishes a radio resource optimization model for the coexistence of train-to-train communication and train-to-wayside communication. With the aim of more efficient scheduling of radio time-frequency resources in the dedicated frequency band, we propose a Stackelberg game-based radio resource management algorithm based on the consideration of different service priorities of trains. The analysis and simulation results show that the proposed algorithm can effectively guarantee the performance of the system and improve the reliability of the CBTC system.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Dominik Neznik ◽  
Lubomir Dobos ◽  
Jan Papaj

In 5G networks, the spectrum allocation techniques play a very important part of the quality of content delivery services. The processes of channelling and device selection are important in the 5G technology and beyond with many access devices in networks to improve the quality of services. In this paper, we propose a method based on Fuzzy Logic, Game Theory, and Smart Method (which is a combination of Fuzzy Logic and Game Theory). These methods are suitable to improve the speed and quality of links of data routing in networks. The paper shows that effective spectrum allocation to devices is not an option but a requirement in a huge data flow environment of the wireless communications, if one wants to ensure acceptable speed and quality of the connection and to provide adequate quality of the services. Each of the selected methods for radio resource management has some advantages and disadvantages in the evaluation of results. The paper describes the process of channel allocation with different methods for IEEE 802.11xx networks that are in the focus of our research in the sphere of wireless communication. Companies use cloud computing to provide services and to share information, but there needs to be some radio resource management to effectively use the services in the wireless mobile environment because the number of different types of devices being connected to the wireless networks to create smart homes and smart cities is growing.


Sign in / Sign up

Export Citation Format

Share Document