Functional studies on the ligand-binding domain of Ultraspiracle from Drosophila melanogaster

2004 ◽  
Vol 385 (1) ◽  
pp. 21-30 ◽  
Author(s):  
S. Przibilla ◽  
W. W. Hitchcock ◽  
M. Szécsi ◽  
M. Grebe ◽  
J. Beatty ◽  
...  

AbstractThe functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acidbinding residue within the ligand-binding pocket, I323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15647-e15647
Author(s):  
Sean W. Fanning ◽  
Geoffrey Greene ◽  
Maureen G. Conlan

e15647 Background: Antiestrogens are a mainstay of treatment for estrogen receptor positive (ER+) breast cancer in both the adjuvant and the advanced/metastatic settings. Elacestrant is a mixed activity selective estrogen receptor (SER) alpha (ERα) antagonist, acting as a SER modulator (SERM) at low doses and a SER degrader (SERD) at high doses. It has shown activity in hormone sensitive wild type (WT) ERα and insensitive estrogen receptor gene 1 (ESR1) mutation-harboring (Y537S and D538G) ERα breast cancer, both in preclinical models and in clinical studies. It also possesses a unique pharmacology compared to other competitive ER antagonists in its ability to cross the blood brain barrier. Competitive ERα antagonists are typically comprised of a core that sits in the ligand binding pocket and an arm that manipulates the structure to achieve SERM or SERD activities. In these molecules, the arm is attached in the same position as the triphenylethylene core of tamoxifen. However, elacestrant possesses a novel site of attachment. As such, we hypothesized that elacestrant adopts an alternative binding orientation in the ERα ligand binding pocket to achieve its unique pharmaceutical profiles. Methods: X-ray crystallography was used to solve a co-crystal structure of elacestrant in complex with WT ERα ligand binding domain to 2Å. Results: Overall, elacestrant promotes the formation of a canonical ERα ligand binding domain antagonist conformation, whereby helix 12 (H12) is docked into the activating function-2 cleft. However, elacestrant adopts a novel vector in the ERα ligand binding pocket that places it in close proximity to helix 12. As a result, it forms a bifurcated hydrogen bond that is not observed in other competitive antiestrogens and samples a chemical space known to increase H12 mobility and induce SERD activity. This novel vector also places it near positions 537 and 538, the two most common sites of somatic mutation. Conclusions: The high-resolution x-ray crystal structure of elacestrant suggests that the unique binding mode it adopts enables novel pharmacology and positions it to achieve potency in the WT and activating somatic ERα mutated breast cancer setting.



2009 ◽  
Vol 23 (8) ◽  
pp. 1231-1241 ◽  
Author(s):  
Ravi Jasuja ◽  
Jagadish Ulloor ◽  
Christopher M. Yengo ◽  
Karen Choong ◽  
Andrei Y. Istomin ◽  
...  

Abstract Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4′-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 ± 1.3 kcal/mol from 3.5 ± 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k ∼30 sec−1) with greater solvent accessibility was followed by rearrangement (k ∼0.01 sec−1), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule-like intermediate state.



2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Irina Krylova ◽  
Fred J Schaufele ◽  
Christophe Guilbert

Abstract Background: Crystallographic structures of nuclear receptor ligand binding domains provide a static model of a receptor stably wrapped around an internalized ligand. Understanding the dynamics of a receptor at different stages of ligand binding has been hampered by the paucity of crystal structures for unliganded nuclear receptors. Molecular dynamic models have been constructed for some nuclear receptors to fill that void. Methods: The molecular simulation docking program MORDOR (MOlecular Recognition with a Driven dynamics OptimizeR)(1) was used to study the structural dynamics of the androgen receptor ligand binding domain (AR LBD) modeled from the static structure of the AR LBD bound to testosterone (T) (PDB ID: 2AM9). The goals of the study were to understand a) the dynamic interaction of the T in its binding pocket, b) AR LBD structural flexibilities that permit T entry/exit from the binding pocket and c) a model of the unliganded AR LBD. Results: Modeling AR LBD structure flexibility over time revealed possible alternative dynamic structures, including those without ligand, overlaid against the canonical nuclear receptor structure. The model dynamically tracks the structural changes as a ligand enters into the ligand binding domain and nestles into the ligand binding pocket. The model predicted the appearance of alpha helices within the AR LBD that transiently fold/unfold during the ligand entry phases. Once in the pocket, the ligand itself remains very dynamic in a still flexible pocket. The model predicted also AR LBD amino acids that sequentially interact with the ligand during its dynamic entry into the AR LBD. Intriguingly, those AR amino acids include those mutated in castration-resistant prostate tumors that continue to grow during androgen suppression therapy. Functional studies showed those mutant ARs had a primary consequence of enhancing response to lower level T, and other androgens, consistent with their role in creating a higher affinity AR that can scavenge low-level androgens in an androgen-suppressed patient. Conclusions: The molecular model of T binding to the AR LBD suggests a degree of structural dynamism not evident in the crystallographic structures commonly associated with nuclear receptors. Some AR mutations activating prostate tumor growth may do so by impacting androgen entry/exit, rather than by altering androgen fit into the ligand binding pocket. Reference: (1) Guilbert C, James TL (2008) J Chem Inf Model. 2008 48(6): 1257-1268. doi: 10.1021/ci8000327



2004 ◽  
Vol 147 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Pascal Farla ◽  
Remko Hersmus ◽  
Bart Geverts ◽  
Pierre O. Mari ◽  
Alex L. Nigg ◽  
...  


2003 ◽  
Vol 23 (6) ◽  
pp. 1922-1934 ◽  
Author(s):  
Marcel J. M. Schaaf ◽  
John A. Cidlowski

ABSTRACT The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), which is activated upon ligand binding, and can alter the expression of target genes either by transrepression or transactivation. We have applied FRAP (fluorescence recovery after photobleaching) to quantitatively assess the mobility of the yellow fluorescent protein (YFP)-tagged human GR α-isoform (hGRα) in the nucleus of transiently transfected COS-1 cells and to elucidate determinants of its mobility. Addition of the high-affinity agonist dexamethasone markedly decreases the mobility of the receptor in a concentration-dependent manner, whereas low-affinity ligands like corticosterone decrease the mobility to a much lesser extent. Analysis of other hGRα ligands differing in affinity suggests that it is the affinity of the ligand that is a major determinant of the decrease in mobility. Similar results were observed for two hGRα antagonists, the low-affinity antagonist ZK98299 and the high-affinity antagonist RU486. The effect of ligand affinity on mobility was confirmed with the hGRα mutant Q642V, which has an altered affinity for triamcinolone acetonide, dexamethasone, and corticosterone. Analysis of hGRα deletion mutants indicates that both the DNA-binding domain and the ligand-binding domain of the receptor are required for a maximal ligand-induced decrease in receptor mobility. Interestingly, the mobility of transfected hGRα differs among cell types. Finally, the proteasome inhibitor MG132 immobilizes a subpopulation of unliganded receptors, via a mechanism requiring the DNA-binding domain and the N-terminal part of the ligand-binding domain. Ligand binding makes the GR resistant to the immobilizing effect of MG132, and this effect depends on the affinity of the ligand. Our data suggest that ligand binding induces a conformational change of the receptor which is dependent on the affinity of the ligand. This altered conformation decreases the mobility of the receptor, probably by targeting the receptor to relatively immobile nuclear domains with which it transiently associates. In addition, this conformational change blocks immobilization of the receptor by MG132.





2014 ◽  
Vol 70 (3) ◽  
pp. 694-707 ◽  
Author(s):  
Truc Kim ◽  
Thao Duong ◽  
Chun-ai Wu ◽  
Jongkeun Choi ◽  
Nguyen Lan ◽  
...  

Escherichia coliSdiA is a quorum-sensing (QS) receptor that responds to autoinducers produced by other bacterial species to control cell division and virulence. Crystal structures reveal thatE. coliSdiA, which is composed of an N-terminal ligand-binding domain and a C-terminal DNA-binding domain (DBD), forms a symmetrical dimer. Although each domain shows structural similarity to other QS receptors, SdiA differs from them in the relative orientation of the two domains, suggesting that its ligand-binding and DNA-binding functions are independent. Consistently, in DNA gel-shift assays the binding affinity of SdiA for theftsQP2 promoter appeared to be insensitive to the presence of autoinducers. These results suggest that autoinducers increase the functionality of SdiA by enhancing the protein stability rather than by directly affecting the DNA-binding affinity. Structural analyses of the ligand-binding pocket showed that SdiA cannot accommodate ligands with long acyl chains, which was corroborated by isothermal titration calorimetry and thermal stability analyses. The formation of an intersubunit disulfide bond that might be relevant to modulation of the DNA-binding activity was predicted from the proximal position of two Cys residues in the DBDs of dimeric SdiA. It was confirmed that the binding affinity of SdiA for theuvrYpromoter was reduced under oxidizing conditions, which suggested the possibility of regulation of SdiA by multiple independent signals such as quorum-sensing inducers and the oxidation state of the cell.



2003 ◽  
Vol 384 (1) ◽  
Author(s):  
M. Grebe ◽  
S. Przibilla ◽  
V.C. Henrich ◽  
M. Spindler-Barth


2017 ◽  
Author(s):  
Yoshinao Katsu ◽  
Kaori Oka ◽  
Michael E. Baker

AbstractWe studied the response to aldosterone, 11-deoxycorticosterone, 11-deoxycortisol, cortisol, corticosterone, progesterone, 19-norprogesterone and spironolactone of human, chicken, alligator, frog and zebrafish full-length mineralocorticoid receptors (MRs) and truncated MRs, lacking the N-terminal domain (NTD) and DNA-binding domain (DBD), in which the hinge domain and ligand binding domain (LBD) were fused to a GAL4-DBD. Compared to full-length MRs, some vertebrate MRs required higher steroid concentrations to activate GAL4-DBD-MR-hinge/LBD constructs. For example, 11-deoxycortisol activated all full-length vertebrate MRs, but did not activate truncated terrestrial vertebrate MRs and was an agonist for truncated zebrafish MR. Progesterone, 19-norProgesterone and spironolactone did not activate full-length and truncated human, alligator and frog MRs. However, at 10 nM, these steroids activated full-length chicken and zebrafish MRs; at 100 nM, these steroids had little activity for truncated chicken MRs, while retaining activity for truncated zebrafish MRs, evidence that regulation of progestin activation of chicken MR resides in NTD/DBD and of zebrafish MR in hinge-LBD. Zebrafish and chicken MRs contain a serine corresponding to Ser810 in human MR, required for its antagonism by progesterone, suggesting novel regulation of progestin activation of chicken and zebrafish MRs. Progesterone may be a physiological activator of chicken and zebrafish MRs.



2005 ◽  
Vol 280 (23) ◽  
pp. 22258-22269 ◽  
Author(s):  
Jennifer A. Carmichael ◽  
Michael C. Lawrence ◽  
Lloyd D. Graham ◽  
Patricia A. Pilling ◽  
V. Chandana Epa ◽  
...  

The ecdysone receptor is a hormone-dependent transcription factor that plays a central role in regulating the expression of vast networks of genes during development and reproduction in the phylum Arthropoda. The functional receptor is a heterodimer of the two nuclear receptor proteins ecdysone receptor (EcR) and ultraspiracle protein. The receptor is the target of the environmentally friendly bisacylhydrazine insecticides, which are effective against Lepidoptera but not against Hemiptera or several other insect orders. Here we present evidence indicating that much of the selectivity of the bisacylhydrazine insecticides can be studied at the level of their binding to purified ecdysone receptor ligand-binding domain (LBD) heterodimers. We report the crystal structure of the ecdysone receptor LBD heterodimer of the hemipteran Bemisia tabaci (Bt, sweet potato whitefly) in complex with the ecdysone analogue ponasterone A. Although comparison with the corresponding known LBD structure from the lepidopteran Heliothis virescens (Hv) ecdysone receptor revealed the overall mode of ponasterone A binding to be very similar in the two cases, we observed that the BtEcR ecdysteroid-binding pocket is structured differently to that of HvEcR in those parts that are not in contact with ponasterone A. We suggest that these differences in the ligand-binding pocket may provide a molecular basis for the taxonomic order selectivity of bisacylhydrazine insecticides.



Sign in / Sign up

Export Citation Format

Share Document