The β12-β13 loop is a key regulatory element for the activity and properties of the catalytic domain of protein phosphatase 1 and 2B

2006 ◽  
Vol 387 (10/11) ◽  
Author(s):  
Xiu-Jie Xie ◽  
Cheng-Zhe Xue ◽  
Wei Huang ◽  
Da-Yu Yu ◽  
Qun Wei
2007 ◽  
Vol 292 (5) ◽  
pp. C1809-C1815 ◽  
Author(s):  
Kenneth B. E. Gagnon ◽  
Roger England ◽  
Lisa Diehl ◽  
Eric Delpire

Previous work from our laboratory and others has established that Ste-20-related proline-alanine-rich kinase (SPAK/PASK) is central to the regulation of NKCC1 function. With no lysine (K) kinase (WNK4) has also been implicated in the regulation of NKCC1 activity through upstream activation of SPAK. Because previous studies from our laboratory also demonstrated a protein-protein interaction between SPAK and apoptosis-associated tyrosine kinase (AATYK), we explore here the possibility that AATYK is another component of the regulation of NKCC1. Heterologous expression of AATYK1 in NKCC1-injected Xenopus laevis oocytes markedly inhibited cotransporter activity under isosmotic conditions. Interestingly, mutation of key residues in the catalytic domain of AATYK1 revealed that the kinase activity does not play a role in the suppression of NKCC1 function. However, mutagenesis of the two SPAK-binding motifs in AATYK1 completely abrogated this effect. As protein phosphatase 1 (PP1) also plays a central role in the dephosphorylation and inactivation of NKCC1, we investigated the possibility that AATYK1 interacts with the phosphatase. We identified a PP1 docking motif in AATYK1 and demonstrated interaction using yeast-2-hybrid analysis. Mutation of a key valine residue (V1175) within this motif prevented protein-protein interaction. Furthermore, the physical interaction between PP1 and AATYK was required for inhibition of NKCC1 activity in Xenopus laevis oocytes. Taken together, our data are consistent with AATYK1 indirectly inhibiting the SPAK/WNK4 activation of the cotransporter by scaffolding an inhibitory phosphatase in proximity to a stimulatory kinase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carmen Stecher ◽  
Sanja Marinkov ◽  
Lucia Mayr-Harting ◽  
Ana Katic ◽  
Marie-Theres Kastner ◽  
...  

Human cytomegalovirus (HCMV) carries the human protein phosphatase 1 (PP1) and other human proteins important for protein translation in its tegument layer for a rapid supply upon infection. However, the biological relevance behind PP1 incorporation and its role during infection is unclear. Additionally, PP1 is a difficult molecular target due to its promiscuity and similarities between the catalytic domain of multiple phosphatases. In this study, we circumvented these shortcomings by using 1E7-03, a small molecule protein–protein interaction inhibitor, as a molecular tool of noncatalytic PP1 inhibition. 1E7-03 treatment of human fibroblasts severely impaired HCMV replication and viral protein translation. More specifically, PP1 inhibition led to the deregulation of metabolic signaling pathways starting at very early time points post-infection. This effect was at least partly mediated by the prevention of AMP-activated protein kinase dephosphorylation, leading to elongation factor 2 hyperphosphorylation and reduced translation rates. These findings reveal an important mechanism of PP1 for lytic HCMV infection.


Diabetes ◽  
1996 ◽  
Vol 45 (3) ◽  
pp. 322-327 ◽  
Author(s):  
E. D. Crook ◽  
D. A. McClain

Sign in / Sign up

Export Citation Format

Share Document