scholarly journals Surface Properties and Reactivity of Phosphate-based Glasses by Inverse Gas Chromatography and Dynamic Vapour Sorption

2018 ◽  
Vol 4 (1) ◽  
pp. 131-142
Author(s):  
Shiva Naseri ◽  
William C. Lepry ◽  
Maziar Shah Mohammadi ◽  
Kristian E. Waters ◽  
Showan N. Nazhat

Abstract The chemical durability of phosphate-based glasses (PGs) in an aqueous environment is crucial in determining their dissolution properties and their ultimate performance in vivo. In this study, inverse gas chromatography (IGC) and dynamic vapour sorption (DVS)were used to investigate the short-term aqueous interactions of PG particles doped with SiO2 and TiO2 (50P2O5-40CaO-xSiO2- (10-x)TiO2, where x=7, 5, 3, and 0 mol%). IGC was used to evaluate the solubility parameter and surface energy of PGs. A good correlation between the polar parts of the solubility parameter and surface energy with glass transition temperature (Tg) and dissolution rates was demonstrated. DVS was applied to monitor the sorption characteristics of the PG particles. An increase in silica content resulted in greater vapour sorption and mass change. Nuclear magnetic resonance spectroscopy data of the PGs post exposure to vapour demonstrated that increased SiO2 content disrupted the glass network and formed protonated phosphate species. Fourier transform infrared spectroscopy verified the presence of non-reacted water molecules in the PGs depending on SiO2 content. Moreover, there was a good correlation between the values measured through IGC and DVS, demonstrating the ability of both techniques in predicting the dissolution properties of PGs as consequence of alterations in their chemistry.

Langmuir ◽  
2011 ◽  
Vol 27 (2) ◽  
pp. 521-523 ◽  
Author(s):  
Shyamal C. Das ◽  
Ian Larson ◽  
David A. V. Morton ◽  
Peter J. Stewart

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1346 ◽  
Author(s):  
Qiao-Na Zhu ◽  
Qiang Wang ◽  
Yan-Biao Hu ◽  
Xawkat Abliz

The physicochemical properties of four 1-alkyl-3-methylimidazolium bromide ([CnC1im]Br, n = 5, 6, 7, 8) ionic liquids (ILs) were investigated in this work by using inverse gas chromatography (IGC) from 303.15 K to 343.15 K. Twenty-eight organic solvents were used to obtain the physicochemical properties between each IL and solvent via the IGC method, including the specific retention volume and the Flory–Huggins interaction parameter. The Hildebrand solubility parameters of the four [CnC1im]Br ILs were determined by linear extrapolation to be δ 2 ( [ C 5 C 1 im ] Br ) = 25.78 (J·cm−3)0.5, δ 2 ( [ C 6 C 1 im ] Br ) = 25.38 (J·cm−3)0.5, δ 2 ( [ C 7 C 1 im ] Br ) =24.78 (J·cm−3)0.5 and δ 2 ( [ C 8 C 1 im ] Br ) = 24.23 (J·cm−3)0.5 at room temperature (298.15 K). At the same time, the Hansen solubility parameters of the four [CnC1im]Br ILs were simulated by using the Hansen Solubility Parameter in Practice (HSPiP) at room temperature (298.15 K). The results were as follows: δ t ( [ C 5 C 1 im ] Br ) = 25.86 (J·cm−3)0.5, δ t ( [ C 6 C 1 im ] Br ) = 25.39 (J·cm−3)0.5, δ t ( [ C 7 C 1 im ] Br ) = 24.81 (J·cm−3)0.5 and δ t ( [ C 8 C 1 im ] Br ) = 24.33 (J·cm−3)0.5. These values were slightly higher than those obtained by the IGC method, but they only exhibited small errors, covering a range of 0.01 to 0.1 (J·cm−3)0.5. In addition, the miscibility between the IL and the probe was evaluated by IGC, and it exhibited a basic agreement with the HSPiP. This study confirms that the combination of the two methods can accurately calculate solubility parameters and select solvents.


Sign in / Sign up

Export Citation Format

Share Document