Analysis of statistical coefficients and autoregressive parameters over intrinsic mode functions (IMFs) for epileptic seizure detection

2020 ◽  
Vol 65 (6) ◽  
pp. 693-704
Author(s):  
Rafik Djemili

AbstractEpilepsy is a persistent neurological disorder impacting over 50 million people around the world. It is characterized by repeated seizures defined as brief episodes of involuntary movement that might entail the human body. Electroencephalography (EEG) signals are usually used for the detection of epileptic seizures. This paper introduces a new feature extraction method for the classification of seizure and seizure-free EEG time segments. The proposed method relies on the empirical mode decomposition (EMD), statistics and autoregressive (AR) parameters. The EMD method decomposes an EEG time segment into a finite set of intrinsic mode functions (IMFs) from which statistical coefficients and autoregressive parameters are computed. Nevertheless, the calculated features could be of high dimension as the number of IMFs increases, the Student’s t-test and the Mann–Whitney U test were thus employed for features ranking in order to withdraw lower significant features. The obtained features have been used for the classification of seizure and seizure-free EEG signals by the application of a feed-forward multilayer perceptron neural network (MLPNN) classifier. Experimental results carried out on the EEG database provided by the University of Bonn, Germany, demonstrated the effectiveness of the proposed method which performance assessed by the classification accuracy (CA) is compared to other existing performances reported in the literature.

Author(s):  
Rajeev Sharma ◽  
Ram Bilas Pachori

The chapter presents a new approach of computer aided diagnosis of focal electroencephalogram (EEG) signals by applying bivariate empirical mode decomposition (BEMD). Firstly, the focal and non-focal EEG signals are decomposed using the BEMD, which results in intrinsic mode functions (IMFs) corresponding to each signal. Secondly, bivariate bandwidths namely, amplitude bandwidth, precession bandwidth, and deformation bandwidth are computed for each obtained IMF. Interquartile range (IQR) values of bivariate bandwidths of IMFs are employed as the features for classification. In order to perform classification least squares support vector machine (LS-SVM) is used. The results of the experiment suggest that the computed bivariate bandwidths are significantly useful to discriminate focal EEG signals. The resultant classification accuracy obtained using proposed methodology, applied on the Bern-Barcelona EEG database, is 84.01%. The obtained results are encouraging and the proposed methodology can be helpful for identification of epileptogenic focus.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Ram Bilas Pachori

A new method for analysis of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) and Fourier-Bessel (FB) expansion has been presented in this paper. The EMD decomposes an EEG signal into a finite set of band-limited signals termed intrinsic mode functions (IMFs). The mean frequency (MF) for each IMF has been computed using FB expansion. The MF measure of the IMFs has been used as a feature in order to identify the difference between ictal and seizure-free intracranial EEG signals. It has been shown that the MF feature of the IMFs has provided statistically significant difference between ictal and seizure-free EEG signals. Simulation results are included to illustrate the effectiveness of the proposed method.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 140 ◽  
Author(s):  
Jiang Wu ◽  
Tengfei Zhou ◽  
Taiyong Li

Epilepsy is a common nervous system disease that is characterized by recurrent seizures. An electroencephalogram (EEG) records neural activity, and it is commonly used for the diagnosis of epilepsy. To achieve accurate detection of epileptic seizures, an automatic detection approach of epileptic seizures, integrating complementary ensemble empirical mode decomposition (CEEMD) and extreme gradient boosting (XGBoost), named CEEMD-XGBoost, is proposed. Firstly, the decomposition method, CEEMD, which is capable of effectively reducing the influence of mode mixing and end effects, was utilized to divide raw EEG signals into a set of intrinsic mode functions (IMFs) and residues. Secondly, the multi-domain features were extracted from raw signals and the decomposed components, and they were further selected according to the importance scores of the extracted features. Finally, XGBoost was applied to develop the epileptic seizure detection model. Experiments were conducted on two benchmark epilepsy EEG datasets, named the Bonn dataset and the CHB-MIT (Children’s Hospital Boston and Massachusetts Institute of Technology) dataset, to evaluate the performance of our proposed CEEMD-XGBoost. The extensive experimental results indicated that, compared with some previous EEG classification models, CEEMD-XGBoost can significantly enhance the detection performance of epileptic seizures in terms of sensitivity, specificity, and accuracy.


2016 ◽  
Vol 28 (11) ◽  
pp. 3153-3161 ◽  
Author(s):  
Yong Zhang ◽  
Xiaomin Ji ◽  
Bo Liu ◽  
Dan Huang ◽  
Fuding Xie ◽  
...  

2014 ◽  
Vol 31 (9) ◽  
pp. 1982-1994 ◽  
Author(s):  
Xiaoying Chen ◽  
Aiguo Song ◽  
Jianqing Li ◽  
Yimin Zhu ◽  
Xuejin Sun ◽  
...  

Abstract It is important to recognize the type of cloud for automatic observation by ground nephoscope. Although cloud shapes are protean, cloud textures are relatively stable and contain rich information. In this paper, a novel method is presented to extract the nephogram feature from the Hilbert spectrum of cloud images using bidimensional empirical mode decomposition (BEMD). Cloud images are first decomposed into several intrinsic mode functions (IMFs) of textural features through BEMD. The IMFs are converted from two- to one-dimensional format, and then the Hilbert–Huang transform is performed to obtain the Hilbert spectrum and the Hilbert marginal spectrum. It is shown that the Hilbert spectrum and the Hilbert marginal spectrum of different types of cloud textural images can be divided into three different frequency bands. A recognition rate of 87.5%–96.97% is achieved through random cloud image testing using this algorithm, indicating the efficiency of the proposed method for cloud nephogram.


2020 ◽  
Vol 163 ◽  
pp. 107224 ◽  
Author(s):  
Varun Bajaj ◽  
Sachin Taran ◽  
Smith K. Khare ◽  
Abdulkadir Sengur

2013 ◽  
Vol 25 (06) ◽  
pp. 1350058 ◽  
Author(s):  
Pablo F. Diez ◽  
Vicente A. Mut ◽  
Eric Laciar ◽  
Abel Torres ◽  
Enrique M. Avila Perona

A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel–Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks' lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.


2018 ◽  
Vol 05 (02) ◽  
pp. 092-098
Author(s):  
Pushpa Balakrishnan ◽  
S. Hemalatha ◽  
Dinesh Nayak Shroff Keshav

Abstract Background Epilepsy is a common neurological disorder characterized by seizures and can lead to life-threatening consequences. The electroencephalogram (EEG) is a diagnostic test used to analyze brain activity in various neurological conditions including epilepsy and interpreted by the clinician for appropriate diagnosis. However, the process of EEG analysis for diagnosis can be automated using machine learning algorithms (MLAs) to aid the clinician. The objective of the study was to test different algorithms that could be used for the detection of seizures. Materials and Methods Video EEG (vEEG) was collected from subjects diagnosed to have episodes of seizures. The epilepsy dataset thus obtained was subjected to empirical mode decomposition (EMD) and the signal was decomposed into intrinsic mode functions (IMFs). The first five levels of decomposition were considered for analysis as per the established protocol. Statistical features such as interquartile range (IQR), entropy, and mean absolute deviation (MAD) were extracted from these IMFs. Results In this study, different MLAs such as nearest neighbor (NN), naïve Bayes (NB), and support vector machines (SVMs) were used to distinguish between normal (interictal) and abnormal (ictal) states. The demonstrated accuracy rates were 97.32% for NN, 99.02% for NB, and 93.75% for SVM. Conclusion Based on this accuracy and sensitivity, it may be posited that the NB classifier provides significantly better results for the detection of abnormal signals indicating that MLA can detect the seizure with better accuracy.


Sign in / Sign up

Export Citation Format

Share Document