A fuzzy sensitivity analysis approach to estimate brain effective connectivity and its application to epileptic seizure detection

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nader Moharamzadeh ◽  
Ali Motie Nasrabadi

Abstract The brain is considered to be the most complicated organ in human body. Inferring and quantification of effective (causal) connectivity among regions of the brain is an important step in characterization of its complicated functions. The proposed method is comprised of modeling multivariate time series with Adaptive Neurofuzzy Inference System (ANFIS) and carrying out a sensitivity analysis using Fuzzy network parameters as a new approach to introduce a connectivity measure for detecting causal interactions between interactive input time series. The results of simulations indicate that this method is successful in detecting causal connectivity. After validating the performance of the proposed method on synthetic linear and nonlinear interconnected time series, it is applied to epileptic intracranial Electroencephalography (EEG) signals. The result of applying the proposed method on Freiburg epileptic intracranial EEG data recorded during seizure shows that the proposed method is capable of discriminating between the seizure and non-seizure states of the brain.

2015 ◽  
Vol 110 (511) ◽  
pp. 1197-1216 ◽  
Author(s):  
Claudia Kirch ◽  
Birte Muhsal ◽  
Hernando Ombao

Author(s):  
Christos Koutlis

In this work the objective is to detect brain connectivity changes during epileptic seizures using methods of multivariate time series analysis on scalp multi-channel EEG. Different brain regions represented by the electrode positions interact in terms of Granger causality and these directed connections formulate the brain network at a certain time window. The numerous proposed network features are believed to capture the information of many network characteristics. The ability of a single network feature of the brain network to detect the transition of brain activity from preictal to ictal is examined. The connectivity of the brain is estimated by 13 Granger causality indices on 7 epochs from multivariate time series (19 channels per epoch) at 15 time windows of 20 seconds (5 min in total) before seizure and during the seizure. The characteristics of the networks are estimated by 379 network features. Finally, the discrimination task (preictal vs. ictal) for each network feature is evaluated by the area under receiver operating characteristic curve (AUROC).


2021 ◽  
Vol 11 (15) ◽  
pp. 6689
Author(s):  
Iván De La Pava Panche ◽  
Andrés Álvarez-Meza ◽  
Paula Marcela Herrera Gómez ◽  
David Cárdenas-Peña ◽  
Jorge Iván Ríos Patiño ◽  
...  

Neural oscillations are present in the brain at different spatial and temporal scales, and they are linked to several cognitive functions. Furthermore, the information carried by their phases is fundamental for the coordination of anatomically distributed processing in the brain. The concept of phase transfer entropy refers to an information theory-based measure of directed connectivity among neural oscillations that allows studying such distributed processes. Phase TE is commonly obtained from probability estimations carried out over data from multiple trials, which bars its use as a characterization strategy in brain–computer interfaces. In this work, we propose a novel methodology to estimate TE between single pairs of instantaneous phase time series. Our approach combines a kernel-based TE estimator defined in terms of Renyi’s α entropy, which sidesteps the need for probability distribution computation with phase time series obtained by complex filtering the neural signals. Besides, a kernel-alignment-based relevance analysis is added to highlight relevant features from effective connectivity-based representation supporting further classification stages in EEG-based brain–computer interface systems. Our proposal is tested on simulated coupled data and two publicly available databases containing EEG signals recorded under motor imagery and visual working memory paradigms. Attained results demonstrate how the introduced effective connectivity succeeds in detecting the interactions present in the data for the former, with statistically significant results around the frequencies of interest. It also reflects differences in coupling strength, is robust to realistic noise and signal mixing levels, and captures bidirectional interactions of localized frequency content. Obtained results for the motor imagery and working memory databases show that our approach, combined with the relevance analysis strategy, codes discriminant spatial and frequency-dependent patterns for the different conditions in each experimental paradigm, with classification performances that do well in comparison with those of alternative methods of similar nature.


Sign in / Sign up

Export Citation Format

Share Document