Glycophorin A-based exclusion of red blood cells for flow cytometric analysis of platelet glycoprotein expression in citrated whole blood

Author(s):  
Christina Berens ◽  
Johannes Oldenburg ◽  
Bernd Pötzsch ◽  
Jens Müller

AbstractObjectivesAnalysis of platelet glycoprotein (GP) expression by flow cytometry is applied for diagnostic confirmation of GP-associated thrombocytopathies. While platelet-rich plasma may be used for distinct identification of target events, this strategy is not feasible for small sample volumes or for patients showing low platelet counts and/or giant platelets. However, also the use of whole blood (WB) is hampered by the difficulty to discriminate platelets from red blood cells (RBC) in such patients. To circumvent these limitations, we evaluated the feasibility of a RBC gating-out strategy.MethodsIn addition to platelet GPIb, GPIIa/IIIa, as well as P-selectin (CD62P), citrated whole blood (CWB) samples were stained for RBC-specific glycophorin A (CD235a). CD235a-negative platelet events were further discriminated by forward-/side-scatter characteristics and platelet GP expressions analyzed relative to that of a healthy control sample processed in parallel.ResultsEstablished reference intervals allowed for clear identification of decreased GPIIb/IIIa- or GPIb expression pattern in samples of patients with confirmed Glanzmann thrombasthenia or Bernard–Soulier syndrome, respectively. It could be shown that the analysis of 2,500 platelet events is sufficient for reliable GP expression analysis, rendering the proposed method applicable to samples with low platelet counts.ConclusionsThis study demonstrates the feasibility of CD235a-based exclusion of RBC for platelet GP expression analysis in CWB. In contrast to direct staining of platelet-specific antigens for target identification, this indirect gating out approach is generally applicable independent of any underlying platelet GP expression deficiency.

2021 ◽  
pp. 1-10
Author(s):  
Rui Zhong ◽  
Dingding Han ◽  
Xiaodong Wu ◽  
Hong Wang ◽  
Wanjing Li ◽  
...  

Background: The hypoxic environment stimulates the human body to increase the levels of hemoglobin (HGB) and hematocrit and the number of red blood cells. Such enhancements have individual differences, leading to a wide range of HGB in Tibetans’ whole blood (WB). Study Design: WB of male Tibetans was divided into 3 groups according to different HGB (i.e., A: >120 but ≤185 g/L, B: >185 but ≤210 g/L, and C: >210 g/L). Suspended red blood cells (SRBC) processed by collected WB and stored in standard conditions were examined aseptically on days 1, 14, 21, and 35 after storage. The routine biochemical indexes, deformability, cell morphology, and membrane proteins were tested. Results: Mean corpuscular volume, adenosine triphosphate, pH, and deformability were not different in group A vs. those in storage (p > 0.05). The increased rate of irreversible morphology of red blood cells was different among the 3 groups, but there was no difference in the percentage of red blood cells with an irreversible morphology after 35 days of storage. Group C performed better in terms of osmotic fragility and showed a lower rigid index than group A. Furthermore, SDS-PAGE revealed similar cross-linking degrees of cell membrane protein but the band 3 protein of group C seemed to experience weaker clustering than that of group A as detected by Western Blot analysis after 35 days of storage. Conclusions: There was no difference in deformability or morphological changes in the 3 groups over the 35 days of storage. High HGB levels of plateau SRBC did not accelerate the RBC change from a biconcave disc into a spherical shape and it did not cause a reduction in deformability during 35 days of preservation in bank conditions.


Vox Sanguinis ◽  
2003 ◽  
Vol 85 (4) ◽  
pp. 253-261 ◽  
Author(s):  
P. A. Kurup ◽  
P. Arun ◽  
N. S. Gayathri ◽  
C. R. Dhanya ◽  
A. R. Indu

1991 ◽  
Vol 48 (1) ◽  
pp. 92-97
Author(s):  
Kelly J. Burch ◽  
Stephanie J. Phelps ◽  
Thomas D. Constance

Sign in / Sign up

Export Citation Format

Share Document