IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of γ-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase according to IFCC Reference Procedures at 37°C

Author(s):  
L. Siekmann ◽  
R. Bonora ◽  
C. A. Burtis ◽  
F. Ceriotti ◽  
P. Clerc-Renaud ◽  
...  
Author(s):  
G. Schumann ◽  
R. Aoki ◽  
C.A. Ferrero ◽  
G. Ehlers ◽  
G. Férard ◽  
...  

AbstractThis paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37°C. The procedure described here is deduced from the previously described 30°C IFCC reference method. Differences are tabulated and commented on.Clin Chem Lab Med 2006;44:1146–55.


1986 ◽  
Vol 32 (10) ◽  
pp. 1901-1905 ◽  
Author(s):  
J C Koedam ◽  
G M Steentjes ◽  
S Buitenhuis ◽  
E Schmidt ◽  
R Klauke

Abstract We produced three batches of a human-serum-based enzyme reference material (ERM) enriched with human aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2), creatine kinase (EC 2.7.3.2), and lactate dehydrogenase (EC 1.1.1.27). The added enzymes were not exhaustively purified; thus the final ERMs contained some enzymes as contaminants, of which only glutamate dehydrogenase activity might interfere. The stability during storage and after reconstitution was good. The commutability of the four enzymes in the three ERM batches was also good, except when German or Scandinavian methods for aminotransferases were involved. The temperature-conversion factors for the ERMs were equivalent to those for patients' sera. Reactivation after reconstitution was complete within 5 min and was independent of the temperature of the reconstitution fluid. We believe that these secondary ERMs will aid in the transfer of accuracy between well-defined reference methods and daily working methods so that clinical enzymology results will become more comparable from laboratory to laboratory.


Author(s):  
Anna Nowakowska ◽  
Dorota Kostrzewa-Nowak ◽  
Rafał Buryta ◽  
Robert Nowak

Physical exercise strongly affects human metabolism and causes biochemical changes. This study aimed to investigate the relationship between routine plasma biomarker levels and recovery efficiency in soccer players during an entire competitive match season. The players participating in the study were divided into a midfielder/defender group (seven midfielders and seven defenders) and a goalie/substitute group (six persons—goalkeepers and players with a short cumulative match-time). The fasting capillary blood samples were taken 17–24 h after each competitive match. The blood plasma was used to determine the creatinine, urea, alkaline phosphatase, creatine kinase, lactate dehydrogenase, aspartate and alanine aminotransferase, iron and magnesium levels of the athletes. The levels of (AST) (aspartate aminotransferase), (ALT) (alanine aminotransferase) and (Cr) creatinine were higher in the midfielder/defender group than in the control group, but only AST and Cr significantly varied over time (AST decreased, and Cr increased with time). The (LDH) (lactate dehydrogenase) activity and urea level were significantly lower in the midfielder/defender group than in the goalie/substitute group, and it significantly varied over time (LDH decreased, and urea increased with time). No differences in the (CK) creatine kinase and (ALP) alkaline phosphatase activities between the groups was found, although CK increased significantly with time in the midfielder/defender group (particularly midfielders in the spring round). In midfielders, the AST activity and the iron level were significantly lower in the spring than in the autumn round. On the contrary, ALT, CK, urea and magnesium levels were significantly higher in the spring than in autumn round. A long-term measurement of biochemical parameters in elite soccer players indicated that AST, CK, LDH and creatinine levels, when analyzed together, could constitute a useful set of markers for monitoring recovery periods.


1988 ◽  
Vol 34 (10) ◽  
pp. 2031-2038 ◽  
Author(s):  
R A Rudolph ◽  
L H Bernstein ◽  
J Babb

Abstract We show how to make an unsupervised discrimination of disease and nondisease states by measuring information and using newer notions of inductive reason. We also present a new theory of group-based reference values that is based on measuring information uncertainty. We use data on the isoenzymes creatine kinase-MB (CK-MB) and lactate dehydrogenase-1 (LD1) and on the percentage of LD1 from 101 patients with acute myocardial infarction (AMI) and from 41 patients with suspected, but unfounded, infarction (non-AMI). Calculating the Shannon entropy, a concept from information theory, of the data base allows determination of a difference in entropy values ("effective information"), which determines decision cutoff values that produce binary-base patterns yielding the fewest classification errors. Redundancy in testing is important because it provides the information to approach a goal of errorless discrimination by coding the test results and meeting the conditions of the "Noisy Channel Theorem" of information theory. This redundancy improves the predictive value of diagnosis by isolating the area of equivocation to evident patterns. Results for CK-MB and LD1 are 99% correct in assigning cases to AMI and non-AMI categories; adding %LD1 increases the proportion of errorless binary patterns from 25% to 90%.


Author(s):  
J. Spincemaille ◽  
J. Delanghe ◽  
M. De Buyzere ◽  
M. Breemeersch ◽  
V. Blaton

Sign in / Sign up

Export Citation Format

Share Document