scholarly journals Deep transfer learning for aortic root dilation identification in 3D ultrasound images

2018 ◽  
Vol 4 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Jannis Hagenah ◽  
Mattias Heinrich ◽  
Floris Ernst

AbstractPre-operative planning of valve-sparing aortic root reconstruction relies on the automatic discrimination of healthy and pathologically dilated aortic roots. The basis of this classification are features extracted from 3D ultrasound images. In previously published approaches, handcrafted features showed a limited classification accuracy. However, feature learning is insufficient due to the small data sets available for this specific problem. In this work, we propose transfer learning to use deep learning on these small data sets. For this purpose, we used the convolutional layers of the pretrained deep neural network VGG16 as a feature extractor. To simplify the problem, we only took two prominent horizontal slices throgh the aortic root, the coaptation plane and the commissure plane, into account by stitching the features of both images together and training a Random Forest classifier on the resulting feature vectors. We evaluated this method on a data set of 48 images (24 healthy, 24 dilated) using 10-fold cross validation. Using the deep learned features we could reach a classification accuracy of 84 %, which clearly outperformed the handcrafted features (71 % accuracy). Even though the VGG16 network was trained on RGB photos and for different classification tasks, the learned features are still relevant for ultrasound image analysis of aortic root pathology identification. Hence, transfer learning makes deep learning possible even on very small ultrasound data sets.

Author(s):  
Jianping Ju ◽  
Hong Zheng ◽  
Xiaohang Xu ◽  
Zhongyuan Guo ◽  
Zhaohui Zheng ◽  
...  

AbstractAlthough convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.


2020 ◽  
Vol 161 ◽  
pp. 113696
Author(s):  
Francisco J. Moreno-Barea ◽  
José M. Jerez ◽  
Leonardo Franco

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan Wang ◽  
Zixuan Feng ◽  
Liping Song ◽  
Xiangbin Liu ◽  
Shuai Liu

With the continuous improvement of human living standards, dietary habits are constantly changing, which brings various bowel problems. Among them, the morbidity and mortality rates of colorectal cancer have maintained a significant upward trend. In recent years, the application of deep learning in the medical field has become increasingly spread aboard and deep. In a colonoscopy, Artificial Intelligence based on deep learning is mainly used to assist in the detection of colorectal polyps and the classification of colorectal lesions. But when it comes to classification, it can lead to confusion between polyps and other diseases. In order to accurately diagnose various diseases in the intestines and improve the classification accuracy of polyps, this work proposes a multiclassification method for medical colonoscopy images based on deep learning, which mainly classifies the four conditions of polyps, inflammation, tumor, and normal. In view of the relatively small number of data sets, the network firstly trained by transfer learning on ImageNet was used as the pretraining model, and the prior knowledge learned from the source domain learning task was applied to the classification task about intestinal illnesses. Then, we fine-tune the model to make it more suitable for the task of intestinal classification by our data sets. Finally, the model is applied to the multiclassification of medical colonoscopy images. Experimental results show that the method in this work can significantly improve the recognition rate of polyps while ensuring the classification accuracy of other categories, so as to assist the doctor in the diagnosis of surgical resection.


2018 ◽  
Vol 44 (4) ◽  
pp. 833-858 ◽  
Author(s):  
Oana Cocarascu ◽  
Francesca Toni

The use of social media has become a regular habit for many and has changed the way people interact with each other. In this article, we focus on analyzing whether news headlines support tweets and whether reviews are deceptive by analyzing the interaction or the influence that these texts have on the others, thus exploiting contextual information. Concretely, we define a deep learning method for relation–based argument mining to extract argumentative relations of attack and support. We then use this method for determining whether news articles support tweets, a useful task in fact-checking settings, where determining agreement toward a statement is a useful step toward determining its truthfulness. Furthermore, we use our method for extracting bipolar argumentation frameworks from reviews to help detect whether they are deceptive. We show experimentally that our method performs well in both settings. In particular, in the case of deception detection, our method contributes a novel argumentative feature that, when used in combination with other features in standard supervised classifiers, outperforms the latter even on small data sets.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 8-9
Author(s):  
Zahra Karimi ◽  
Brian Sullivan ◽  
Mohsen Jafarikia

Abstract Previous studies have shown that the accuracy of Genomic Estimated Breeding Value (GEBV) as a predictor of future performance is higher than the traditional Estimated Breeding Value (EBV). The purpose of this study was to estimate the potential advantage of selection on GEBV for litter size (LS) compared to selection on EBV in the Canadian swine dam line breeds. The study included 236 Landrace and 210 Yorkshire gilts born in 2017 which had their first farrowing after 2017. GEBV and EBV for LS were calculated with data that was available at the end of 2017 (GEBV2017 and EBV2017, respectively). De-regressed EBV for LS in July 2019 (dEBV2019) was used as an adjusted phenotype. The average dEBV2019 for the top 40% of sows based on GEBV2017 was compared to the average dEBV2019 for the top 40% of sows based on EBV2017. The standard error of the estimated difference for each breed was estimated by comparing the average dEBV2019 for repeated random samples of two sets of 40% of the gilts. In comparison to the top 40% ranked based on EBV2017, ranking based on GEBV2017 resulted in an extra 0.45 (±0.29) and 0.37 (±0.25) piglets born per litter in Landrace and Yorkshire replacement gilts, respectively. The estimated Type I errors of the GEBV2017 gain over EBV2017 were 6% and 7% in Landrace and Yorkshire, respectively. Considering selection of both replacement boars and replacement gilts using GEBV instead of EBV can translate into increased annual genetic gain of 0.3 extra piglets per litter, which would more than double the rate of gain observed from typical EBV based selection. The permutation test for validation used in this study appears effective with relatively small data sets and could be applied to other traits, other species and other prediction methods.


Sign in / Sign up

Export Citation Format

Share Document