scholarly journals Analytical solution to bending of stiffened and continuous antisymmetric laminates

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Liecheng Sun ◽  
Issam E. Harik

AbstractAnalytical Strip Method is presented for the analysis of the bending-extension coupling problem of stiffened and continuous antisymmetric thin laminates. A system of three equations of equilibrium, governing the general response of antisymmetric laminates, is reduced to a single eighth-order partial differential equation (PDE) in terms of a displacement function. The PDE is then solved in a single series form to determine the displacement response of antisymmetric cross-ply and angle-ply laminates. The solution is applicable to rectangular laminates with two opposite edges simply supported and the other edges being free, clamped, simply supported, isotropic beam supports, or point supports.

2016 ◽  
Vol 6 (2) ◽  
pp. 21-24
Author(s):  
A. Mahavir Singh ◽  
B. I.K. Pandita ◽  
C. S.K. Kheer

Abstract A new methodology based on Principle of Quasi Work is used for calculating the deflections in plates. The basis of this methodology is concept of topologically similar systems. Present method uses a priory known solution for deflection of a simply supported plate for arriving at the deflection of any other topologically similar plate with different loading and boundary conditions. This priory known solution is herein referred to as reference equation. Present methodology is easy as deflections are obtained mostly by elementary mathematics for point loads and for other loads by integration that’s integrant is reference equation multiplied by the equation of load. In the present methodology solution of fourth order partial differential equation in two independent variables as used in lengthy and not so easy conventional method is bypassed.


2009 ◽  
Vol 131 (1) ◽  
Author(s):  
Roshan Lal ◽  
Dhanpati

Free transverse vibrations of nonhomogeneous orthotropic rectangular plates of varying thickness with two opposite simply supported edges (y=0 and y=b) and resting on two-parameter foundation (Pasternak-type) have been studied on the basis of classical plate theory. The other two edges (x=0 and x=a) may be any combination of clamped and simply supported edge conditions. The nonhomogeneity of the plate material is assumed to arise due to the exponential variations in Young’s moduli and density along one direction. By expressing the displacement mode as a sine function of the variable between simply supported edges, the fourth order partial differential equation governing the motion of such plates of exponentially varying thickness in another direction gets reduced to an ordinary differential equation with variable coefficients. The resulting equation is then solved numerically by using the Chebyshev collocation technique for two different combinations of clamped and simply supported conditions at the other two edges. The lowest three frequencies have been computed to study the behavior of foundation parameters together with other plate parameters such as nonhomogeneity, density, and thickness variation on the frequencies of the plate with different aspect ratios. Normalized displacements are presented for a specified plate. A comparison of results with those obtained by other methods shows the computational efficiency of the present approach.


Author(s):  
T. O. Awodola ◽  
S. Adeoye

This work investigates the behavior under Moving distributed masses of orthotropic rectangular plates resting on bi-parametric elastic foundation. The governing equation is a fourth order partial differential equation with variable and singular co-efficients. The solutions to the problem are obtained by transforming the fourth order partial differential equation for the problem to a set of coupled second order ordinary differential equations using the technique of Shadnam et al[1]. This is then simplified using modified asymptotic method of Struble. The closed form solution is analyzed, resonance conditions are obtained and the results are presented in plotted curves for both cases of moving distributed mass and moving distributed force.


2021 ◽  
pp. 1-20
Author(s):  
STEPHEN TAYLOR ◽  
XUESHAN YANG

Abstract The functional partial differential equation (FPDE) for cell division, $$ \begin{align*} &\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t))\\ &\quad = -(b(x,t)+\mu(x,t))n(x,t)+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t), \end{align*} $$ is not amenable to analytical solution techniques, despite being closely related to the first-order partial differential equation (PDE) $$ \begin{align*} \frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t), \end{align*} $$ which, with known $F(x,t)$ , can be solved by the method of characteristics. The difficulty is due to the advanced functional terms $n(\alpha x,t)$ and $n(\beta x,t)$ , where $\beta \ge 2 \ge \alpha \ge 1$ , which arise because cells of size x are created when cells of size $\alpha x$ and $\beta x$ divide. The nonnegative function, $n(x,t)$ , denotes the density of cells at time t with respect to cell size x. The functions $g(x,t)$ , $b(x,t)$ and $\mu (x,t)$ are, respectively, the growth rate, splitting rate and death rate of cells of size x. The total number of cells, $\int _{0}^{\infty }n(x,t)\,dx$ , coincides with the $L^1$ norm of n. The goal of this paper is to find estimates in $L^1$ (and, with some restrictions, $L^p$ for $p>1$ ) for a sequence of approximate solutions to the FPDE that are generated by solving the first-order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document