scholarly journals A New Generalization of the P1 Non-Conforming FEM to Higher Polynomial Degrees

2017 ◽  
Vol 17 (1) ◽  
pp. 161-185 ◽  
Author(s):  
Mira Schedensack

AbstractThis paper generalizes the non-conforming FEM of Crouzeix and Raviart and its fundamental projection property by a novel mixed formulation for the Poisson problem based on the Helmholtz decomposition. The new formulation allows for ansatz spaces of arbitrary polynomial degree and its discretization coincides with the mentioned non-conforming FEM for the lowest polynomial degree. The discretization directly approximates the gradient of the solution instead of the solution itself. Besides the a priori and medius analysis, this paper proves optimal convergence rates for an adaptive algorithm for the new discretization. These are also demonstrated in numerical experiments. Furthermore, this paper focuses on extensions of this new scheme to quadrilateral meshes, mixed FEMs, and three space dimensions.

Author(s):  
Silvia Bertoluzza ◽  
Ilaria Perugia ◽  
Daniele Prada

In this paper, we introduce a new stabilization for discontinuous Galerkin methods for the Poisson problem on polygonal meshes, which induces optimal convergence rates in the polynomial approximation degree [Formula: see text]. The stabilization is obtained by penalizing, in each mesh element [Formula: see text], a residual in the norm of the dual of [Formula: see text]. This negative norm is algebraically realized via the introduction of new auxiliary spaces. We carry out a [Formula: see text]-explicit stability and error analysis, proving [Formula: see text]-robustness of the overall method. The theoretical findings are demonstrated in a series of numerical experiments.


1998 ◽  
Vol 08 (03) ◽  
pp. 407-430 ◽  
Author(s):  
D. CHAPELLE ◽  
R. STENBERG

We propose a simple modification of a recently introduced locking-free finite element method for the Reissner–Mindlin plate model. By this modification, we are able to obtain optimal convergence rates on numerical benchmarks. These results are substantiated by a complete mathematical analysis which provides optimal a priori error estimates.


2019 ◽  
Vol 27 (4) ◽  
pp. 539-557
Author(s):  
Barbara Kaltenbacher ◽  
Andrej Klassen ◽  
Mario Luiz Previatti de Souza

Abstract In this paper, we consider the iteratively regularized Gauss–Newton method, where regularization is achieved by Ivanov regularization, i.e., by imposing a priori constraints on the solution. We propose an a posteriori choice of the regularization radius, based on an inexact Newton/discrepancy principle approach, prove convergence and convergence rates under a variational source condition as the noise level tends to zero and provide an analysis of the discretization error. Our results are valid in general, possibly nonreflexive Banach spaces, including, e.g., {L^{\infty}} as a preimage space. The theoretical findings are illustrated by numerical experiments.


Author(s):  
Erik Burman ◽  
Guillaume Delay ◽  
Alexandre Ern

Abstract We design and analyze a hybrid high-order method on unfitted meshes to approximate the Stokes interface problem. The interface can cut through the mesh cells in a very general fashion. A cell-agglomeration procedure prevents the appearance of small cut cells. Our main results are inf-sup stability and a priori error estimates with optimal convergence rates in the energy norm. Numerical simulations corroborate these results.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Innerberger ◽  
Dirk Praetorius

AbstractWe consider an adaptive finite element method with arbitrary but fixed polynomial degree {p\geq 1}, where adaptivity is driven by an edge-based residual error estimator. Based on the modified maximum criterion from [L. Diening, C. Kreuzer and R. Stevenson, Instance optimality of the adaptive maximum strategy, Found. Comput. Math. 16 2016, 1, 33–68], we propose a goal-oriented adaptive algorithm and prove that it is instance optimal. More precisely, the goal error is bounded by the product of the total errors (being the sum of energy error plus data oscillations) of the primal and the dual problem, and the proposed algorithm is instance optimal with respect to this upper bound. Numerical experiments underline our theoretical findings.


2009 ◽  
Vol 19 (04) ◽  
pp. 651-668 ◽  
Author(s):  
SUSANNE C. BRENNER ◽  
FENGYAN LI ◽  
LI-YENG SUNG

A nonconforming finite element method for a two-dimensional curl–curl problem is studied in this paper. It uses weakly continuous P1 vector fields and penalizes the local divergence. Two consistency terms involving the jumps of the vector fields across element boundaries are also included to ensure the convergence of the scheme. Optimal convergence rates (up to an arbitrary positive ∊) in both the energy norm and the L2 norm are established on graded meshes. This scheme can also be used in the computation of Maxwell eigenvalues without generating spurious eigenmodes. The theoretical results are confirmed by numerical experiments.


Author(s):  
Dominic Breit ◽  
Lars Diening ◽  
Johannes Storn ◽  
Jörn Wichmann

Abstract We study the parabolic $p$-Laplacian system in a bounded domain. We deduce optimal convergence rates for the space–time discretization based on an implicit Euler scheme in time. Our estimates are expressed in terms of Nikolskiǐ spaces and therefore cover situations when the (gradient of the) solution has only fractional derivatives in space and time. The main novelty is that, different to all previous results, we do not assume any coupling condition between the space and time resolutions $h$ and $\tau $. For this we show that the $L^2$-projection is compatible with the quasi-norm. The theoretical error analysis is complemented by numerical experiments.


Author(s):  
Radu Boţ ◽  
Guozhi Dong ◽  
Peter Elbau ◽  
Otmar Scherzer

AbstractRecently, there has been a great interest in analysing dynamical flows, where the stationary limit is the minimiser of a convex energy. Particular flows of great interest have been continuous limits of Nesterov’s algorithm and the fast iterative shrinkage-thresholding algorithm, respectively. In this paper, we approach the solutions of linear ill-posed problems by dynamical flows. Because the squared norm of the residual of a linear operator equation is a convex functional, the theoretical results from convex analysis for energy minimising flows are applicable. However, in the restricted situation of this paper they can often be significantly improved. Moreover, since we show that the proposed flows for minimising the norm of the residual of a linear operator equation are optimal regularisation methods and that they provide optimal convergence rates for the regularised solutions, the given rates can be considered the benchmarks for further studies in convex analysis.


Sign in / Sign up

Export Citation Format

Share Document