Poincaré Inequality for a Mesh-Dependent 2-Norm on Piecewise Linear Surfaces with Boundary

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shawn W. Walker

Abstract We establish several useful estimates for a non-conforming 2-norm posed on piecewise linear surface triangulations with boundary, with the main result being a Poincaré inequality. We also obtain equivalence of the non-conforming 2-norm posed on the true surface with the norm posed on a piecewise linear approximation. Moreover, we allow for free boundary conditions. The true surface is assumed to be C 2 , 1 C^{2,1} when free conditions are present; otherwise, C 2 C^{2} is sufficient. The framework uses tools from differential geometry and the closest point map (see [G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin (1988), 142–155]) for approximating the full surface Hessian operator. We also present a novel way of applying the closest point map when dealing with surfaces with boundary. Connections with surface finite element methods for fourth-order problems are also noted.

Author(s):  
Franck Barthe ◽  
Michał Strzelecki

AbstractProbability measures satisfying a Poincaré inequality are known to enjoy a dimension-free concentration inequality with exponential rate. A celebrated result of Bobkov and Ledoux shows that a Poincaré inequality automatically implies a modified logarithmic Sobolev inequality. As a consequence the Poincaré inequality ensures a stronger dimension-free concentration property, known as two-level concentration. We show that a similar phenomenon occurs for the Latała–Oleszkiewicz inequalities, which were devised to uncover dimension-free concentration with rate between exponential and Gaussian. Motivated by the search for counterexamples to related questions, we also develop analytic techniques to study functional inequalities for probability measures on the line with wild potentials.


2020 ◽  
Vol 8 (1) ◽  
pp. 166-181
Author(s):  
Rebekah Jones ◽  
Panu Lahti

AbstractWe prove a duality relation for the moduli of the family of curves connecting two sets and the family of surfaces separating the sets, in the setting of a complete metric space equipped with a doubling measure and supporting a Poincaré inequality. Then we apply this to show that quasiconformal mappings can be characterized by the fact that they quasi-preserve the modulus of certain families of surfaces.


2021 ◽  
pp. 1-37
Author(s):  
Florian F. Gunsilius

The theory of optimal transportation has experienced a sharp increase in interest in many areas of economic research such as optimal matching theory and econometric identification. A particularly valuable tool, due to its convenient representation as the gradient of a convex function, has been the Brenier map: the matching obtained as the optimizer of the Monge–Kantorovich optimal transportation problem with the euclidean distance as the cost function. Despite its popularity, the statistical properties of the Brenier map have yet to be fully established, which impedes its practical use for estimation and inference. This article takes a first step in this direction by deriving a convergence rate for the simple plug-in estimator of the potential of the Brenier map via the semi-dual Monge–Kantorovich problem. Relying on classical results for the convergence of smoothed empirical processes, it is shown that this plug-in estimator converges in standard deviation to its population counterpart under the minimax rate of convergence of kernel density estimators if one of the probability measures satisfies the Poincaré inequality. Under a normalization of the potential, the result extends to convergence in the $L^2$ norm, while the Poincaré inequality is automatically satisfied. The main mathematical contribution of this article is an analysis of the second variation of the semi-dual Monge–Kantorovich problem, which is of independent interest.


2014 ◽  
Vol 2015 (17) ◽  
pp. 8116-8151
Author(s):  
Christian Houdré ◽  
Ionel Popescu

Sign in / Sign up

Export Citation Format

Share Document