Identification of Matrix Diffusion Coefficient in a Parabolic PDE

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Subhankar Mondal ◽  
M. Thamban Nair

Abstract An inverse problem of identifying the diffusion coefficient in matrix form in a parabolic PDE is considered. Following the idea of natural linearization, considered by Cao and Pereverzev (2006), the nonlinear inverse problem is transformed into a problem of solving an operator equation where the operator involved is linear. Solving the linear operator equation turns out to be an ill-posed problem. The method of Tikhonov regularization is employed for obtaining stable approximations and its finite-dimensional analysis is done based on the Galerkin method, for which an orthogonal projection on the space of matrices with entries from L 2 ⁢ ( Ω ) L^{2}(\Omega) is defined. Since the error estimates in Tikhonov regularization method rely heavily on the adjoint operator, an explicit representation of adjoint of the linear operator involved is obtained. For choosing the regularizing parameter, the adaptive technique is employed in order to obtain order optimal rate of convergence. For the relaxed noisy data, we describe a procedure for obtaining a smoothed version so as to obtain the error estimates. Numerical experiments are carried out for a few illustrative examples.

Author(s):  
Vladimir Vasin ◽  
◽  
Vladimir Belyaev

We investigate a linear operator equation of the first kind that is ill-posed in the Hadamard sence. It is assumed that its solution is representable as a sum of smooth and discontinuous components. To construct a stable approximate solutions, we use the modified Tikhonov method with the stabilizing functional as a sum of the Lebesgue norm for the smooth component and a smoothed BV-norm for the discontinuous component. Theorems of exis- tence, uniqueness, and convergence both the regularized solutions and its finite-dimentional approximations are proved. Also, results of numerical experiments are presented.


Author(s):  
Bechouat Tahar ◽  
Boussetila Nadjib ◽  
Rebbani Faouzia

In this paper, we report on a strategy for computing the numerical approximate solution for a class of ill-posed operator equations in Hilbert spaces: [Formula: see text]. This approach is a combination of Tikhonov regularization method and the finite rank approximation of [Formula: see text]. Finally, numerical results are given to show the effectiveness of this method.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Javad Alavi ◽  
Hossein Aminikhah

In this paper, the boundary value inverse problem related to the generalized Burgers–Fisher and generalized Burgers–Huxley equations is solved numerically based on a spline approximation tool. B-splines with quasilinearization and Tikhonov regularization methods are used to obtain new numerical solutions to this problem. First, a quasilinearization method is used to linearize the equation in a specific time step. Then, a linear combination of B-splines is used to approximate the largest order of derivatives in the equation. By integrating from this linear combination, some approximations have been obtained for each of the functions and derivatives with respect to time and space. The boundary and additional conditions of the problem are also applied in these approximations. The Tikhonov regularization method is used to solve the system of linear equations using noisy data. Several numerical examples are provided to illustrate the accuracy and efficiency of the method.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


Author(s):  
Radu Boţ ◽  
Guozhi Dong ◽  
Peter Elbau ◽  
Otmar Scherzer

AbstractRecently, there has been a great interest in analysing dynamical flows, where the stationary limit is the minimiser of a convex energy. Particular flows of great interest have been continuous limits of Nesterov’s algorithm and the fast iterative shrinkage-thresholding algorithm, respectively. In this paper, we approach the solutions of linear ill-posed problems by dynamical flows. Because the squared norm of the residual of a linear operator equation is a convex functional, the theoretical results from convex analysis for energy minimising flows are applicable. However, in the restricted situation of this paper they can often be significantly improved. Moreover, since we show that the proposed flows for minimising the norm of the residual of a linear operator equation are optimal regularisation methods and that they provide optimal convergence rates for the regularised solutions, the given rates can be considered the benchmarks for further studies in convex analysis.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document