scholarly journals An extention of Nomizu’s Theorem –A user’s guide–

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Hisashi Kasuya

AbstractFor a simply connected solvable Lie group G with a lattice Γ, the author constructed an explicit finite-dimensional differential graded algebra A*Γ which computes the complex valued de Rham cohomology H*(Γ\G, C) of the solvmanifold Γ\G. In this note, we give a quick introduction to the construction of such A*Γ including a simple proof of H*(A*Γ) ≅ H*(Γ\G, C).

1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


Author(s):  
Loring W. Tu

This chapter investigates differential graded algebras. Throughout the chapter, G will be a Lie group with Lie algebra g. On a manifold M, the de Rham complex is a differential graded algebra, a graded algebra that is also a differential complex. If the Lie group G acts smoothly on M, then the de Rham complex Ω‎(M) is more than a differential graded algebra. It has in addition two actions of the Lie algebra: interior multiplication and the Lie derivative. A differential graded algebra Ω‎ with an interior multiplication and a Lie derivative satisfying Cartan's homotopy formula is called a g-differential graded algebra. To construct an algebraic model for equivariant cohomology, the chapter first constructs an algebraic model for the total space EG of the universal G-bundle. It is a g-differential graded algebra called the Weil algebra.


2016 ◽  
Vol 08 (02) ◽  
pp. 273-285 ◽  
Author(s):  
Hisashi Kasuya

For a lattice [Formula: see text] of a simply connected solvable Lie group [Formula: see text], we describe the analytic germ in the variety of representations of [Formula: see text] at the trivial representation as an analytic germ which is linearly embedded in the analytic germ associated with the nilpotent Lie algebra determined by [Formula: see text]. By this description, under certain assumption, we study the singularity of the analytic germ in the variety of representations of [Formula: see text] at the trivial representation by using the Kuranishi space construction. By a similar technique, we also study deformations of holomorphic structures of trivial vector bundles over complex parallelizable solvmanifolds.


2020 ◽  
pp. 1-20
Author(s):  
RAJDIP PALIT ◽  
RIDDHI SHAH

Abstract For a locally compact group G, we study the distality of the action of automorphisms T of G on Sub G , the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on Sub G if and only if T n is the identity map for some $n\in\mathbb N$ . As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on Sub G if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on Sub G if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on Sub G . We also show that any compactly generated distal group G is Lie projective.


2002 ◽  
Vol 30 (11) ◽  
pp. 667-696 ◽  
Author(s):  
Luis Fernando Mejias

We use noncommutative differential forms (which were first introduced by Connes) to construct a noncommutative version of the complex of Cenkl and PorterΩ∗,∗(X)for a simplicial setX. The algebraΩ∗,∗(X)is a differential graded algebra with a filtrationΩ∗,q(X)⊂Ω∗,q+1(X), such thatΩ∗,q(X)is aℚq-module, whereℚ0=ℚ1=ℤandℚq=ℤ[1/2,…,1/q]forq>1. Then we use noncommutative versions of the Poincaré lemma and Stokes' theorem to prove the noncommutative tame de Rham theorem: ifXis a simplicial set of finite type, then for eachq≥1and anyℚq-moduleM, integration of forms induces a natural isomorphism ofℚq-modulesI:Hi(Ω∗,q(X),M)→Hi(X;M)for alli≥0. Next, we introduce a complex of noncommutative tame de Rham currentsΩ∗,∗(X)and we prove the noncommutative tame de Rham theorem for homology: ifXis a simplicial set of finite type, then for eachq≥1and anyℚq-moduleM, there is a natural isomorphism ofℚq-modulesI:Hi(X;M)→Hi(Ω∗,q(X),M)for alli≥0.


2018 ◽  
Vol 29 (09) ◽  
pp. 1850062 ◽  
Author(s):  
Iakovos Androulidakis ◽  
Paolo Antonini

Inspired by the work of Molino, we show that the integrability obstruction for transitive Lie algebroids can be made to vanish by adding extra dimensions. In particular, we prove that the Weinstein groupoid of a non-integrable transitive and abelian Lie algebroid is the quotient of a finite-dimensional Lie groupoid. Two constructions as such are given: First, explaining the counterexample to integrability given by Almeida and Molino, we see that it can be generalized to the construction of an “Almeida–Molino” integrable lift when the base manifold is simply connected. On the other hand, we notice that the classical de Rham isomorphism provides a universal integrable algebroid. Using it we construct a “de Rham” integrable lift for any given transitive Abelian Lie algebroid.


1997 ◽  
Vol 122 (2) ◽  
pp. 245-250 ◽  
Author(s):  
RICHARD MOSAK ◽  
MARTIN MOSKOWITZ

Given a Lie group, it is often useful to have a parametrization of the set of its lattices. In Euclidean space ℝn, for example, each lattice corresponds to a basis, and any lattice is equivalent to the standard integer lattice under an automorphism in GL(n, ℝ). In the nilpotent case, the lattices of the Heisenberg groups are classified, up to automorphisms, by certain sequences of positive integers with divisibility conditions (see [1]). In this paper we will study the set of lattices in a class of simply connected, solvable, but not nilpotent groups G. The construction of G depends on a diagonal n×n matrix Δ with distinct non-zero eigenvalues, of trace 0; we will writeformula here


2018 ◽  
Vol 61 (3) ◽  
pp. 869-877
Author(s):  
Yanghyun Byun ◽  
Joohee Kim

AbstractWe invoke the classical fact that the algebra of bi-invariant forms on a compact connected Lie group G is naturally isomorphic to the de Rham cohomology H*dR(G) itself. Then, we show that when a flat connection A exists on a principal G-bundle P, we may construct a homomorphism EA: H*dR(G)→H*dR(P), which eventually shows that the bundle satisfies a condition for the Leray–Hirsch theorem. A similar argument is shown to apply to its adjoint bundle. As a corollary, we show that that both the flat principal bundle and its adjoint bundle have the real coefficient cohomology isomorphic to that of the trivial bundle.


Author(s):  
Loring W. Tu

This chapter evaluates the Weil algebra and the Weil model. The Weil algebra of a Lie algebra g is a g-differential graded algebra that in a definite sense models the total space EG of a universal bundle when g is the Lie algebra of a Lie group G. The Weil algebra of the Lie algebra g and the map f is called the Weil map. The Weil map f is a graded-algebra homomorphism. The chapter then shows that the Weil algebra W(g) is a g-differential graded algebra. The chapter then looks at the cohomology of the Weil algebra; studies algebraic models for the universal bundle and the homotopy quotient; and considers the functoriality of the Weil model.


Sign in / Sign up

Export Citation Format

Share Document