The Weil Algebra and the Weil Model

Author(s):  
Loring W. Tu

This chapter evaluates the Weil algebra and the Weil model. The Weil algebra of a Lie algebra g is a g-differential graded algebra that in a definite sense models the total space EG of a universal bundle when g is the Lie algebra of a Lie group G. The Weil algebra of the Lie algebra g and the map f is called the Weil map. The Weil map f is a graded-algebra homomorphism. The chapter then shows that the Weil algebra W(g) is a g-differential graded algebra. The chapter then looks at the cohomology of the Weil algebra; studies algebraic models for the universal bundle and the homotopy quotient; and considers the functoriality of the Weil model.

Author(s):  
Loring W. Tu

This chapter investigates differential graded algebras. Throughout the chapter, G will be a Lie group with Lie algebra g. On a manifold M, the de Rham complex is a differential graded algebra, a graded algebra that is also a differential complex. If the Lie group G acts smoothly on M, then the de Rham complex Ω‎(M) is more than a differential graded algebra. It has in addition two actions of the Lie algebra: interior multiplication and the Lie derivative. A differential graded algebra Ω‎ with an interior multiplication and a Lie derivative satisfying Cartan's homotopy formula is called a g-differential graded algebra. To construct an algebraic model for equivariant cohomology, the chapter first constructs an algebraic model for the total space EG of the universal G-bundle. It is a g-differential graded algebra called the Weil algebra.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Hisashi Kasuya

AbstractFor a simply connected solvable Lie group G with a lattice Γ, the author constructed an explicit finite-dimensional differential graded algebra A*Γ which computes the complex valued de Rham cohomology H*(Γ\G, C) of the solvmanifold Γ\G. In this note, we give a quick introduction to the construction of such A*Γ including a simple proof of H*(A*Γ) ≅ H*(Γ\G, C).


2019 ◽  
Vol 11 (01) ◽  
pp. 109-118
Author(s):  
Alexander Gorokhovsky ◽  
Dennis Sullivan ◽  
Zhizhang Xie

In the context of commutative differential graded algebras over [Formula: see text], we show that an iteration of “odd spherical fibration” creates a “total space” commutative differential graded algebra with only odd degree cohomology. Then we show for such a commutative differential graded algebra that, for any of its “fibrations” with “fiber” of finite cohomological dimension, the induced map on cohomology is injective.


Author(s):  
Ercüment H. Ortaçgil
Keyword(s):  

The discussions up to Chapter 4 have been concerned with the Lie group. In this chapter, the Lie algebra is constructed by defining the operators ∇ and ∇̃.


2005 ◽  
Vol 15 (03) ◽  
pp. 793-801 ◽  
Author(s):  
ANTHONY M. BLOCH ◽  
ARIEH ISERLES

In this paper we develop a theory for analysing the "radius" of the Lie algebra of a matrix Lie group, which is a measure of the size of its commutators. Complete details are given for the Lie algebra 𝔰𝔬(n) of skew symmetric matrices where we prove [Formula: see text], X, Y ∈ 𝔰𝔬(n), for the Frobenius norm. We indicate how these ideas might be extended to other matrix Lie algebras. We discuss why these ideas are of interest in applications such as geometric integration and optimal control.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Camelia Pop

A controllable drift-free system on the Lie group G=SO(3)×R3×R3 is considered. The dynamics and geometrical properties of the corresponding reduced Hamilton’s equations on g∗,·,·- are studied, where ·,·- is the minus Lie-Poisson structure on the dual space g∗ of the Lie algebra g=so(3)×R3×R3 of G. The numerical integration of this system is also discussed.


Author(s):  
Günter Harder

This chapter shows that certain classes of Harish-Chandra modules have in a natural way a structure over ℤ. The Lie group is replaced by a split reductive group scheme G/ℤ, its Lie algebra is denoted by 𝖌ℤ. On the group scheme G/ℤ there is a Cartan involution 𝚯 that acts by t ↦ t −1 on the split maximal torus. The fixed points of G/ℤ under 𝚯 is a flat group scheme 𝒦/ℤ. A Harish-Chandra module over ℤ is a ℤ-module 𝒱 that comes with an action of the Lie algebra 𝖌ℤ, an action of the group scheme 𝒦, and some compatibility conditions is required between these two actions. Finally, 𝒦-finiteness is also required, which is that 𝒱 is a union of finitely generated ℤ modules 𝒱I that are 𝒦-invariant. The definitions imitate the definition of a Harish-Chandra modules over ℝ or over ℂ.


Author(s):  
Loring W. Tu

This chapter describes basic forms. On a principal bundle π‎: P → M, the differential forms on P that are pullbacks of forms ω‎ on the base M are called basic forms. The chapter characterizes basic forms in terms of the Lie derivative and interior multiplication. It shows that basic forms on a principal bundle are invariant and horizontal. To understand basic forms better, the chapter considers a simple example. The plane ℝ2 may be viewed as the total space of a principal ℝ-bundle. A connected Lie group is generated by any neighborhood of the identity. This example shows the necessity of the connectedness hypothesis.


Author(s):  
Loring W. Tu

This chapter focuses on circle actions. Specifically, it specializes the Weil algebra and the Weil model to a circle action. In this case, all the formulas simplify. The chapter derives a simpler complex, called the Cartan model, which is isomorphic to the Weil model as differential graded algebras. It considers the theorem that for a circle action, there is a graded-algebra isomorphism. Under the isomorphism F, the Weil differential δ‎ corresponds to a differential called the Cartan differential. An element of the Cartan model is called an equivariant differential form or equivariant form for a circle action on the manifold M.


1965 ◽  
Vol 17 ◽  
pp. 550-558 ◽  
Author(s):  
Arthur A. Sagle

In (4) Malcev generalizes the notion of the Lie algebra of a Lie group to that of an anti-commutative "tangent algebra" of an analytic loop. In this paper we shall discuss these concepts briefly and modify them to the situation where the cancellation laws in the loop are replaced by a unique two-sided inverse. Thus we shall have a set H with a binary operation xy defined on it having the algebraic properties(1.1) H contains a two-sided identity element e;(1.2) for every x ∊ H, there exists a unique element x-1 ∊ H such that xx-1 = x-1x = e;


Sign in / Sign up

Export Citation Format

Share Document