scholarly journals Integral operators, bispectrality and growth of Fourier algebras

2020 ◽  
Vol 2020 (766) ◽  
pp. 151-194 ◽  
Author(s):  
W. Riley Casper ◽  
Milen T. Yakimov

AbstractIn the mid 1980s it was conjectured that every bispectral meromorphic function {\psi(x,y)} gives rise to an integral operator {K_{\psi}(x,y)} which possesses a commuting differential operator. This has been verified by a direct computation for several families of functions {\psi(x,y)} where the commuting differential operator is of order {\leq 6}. We prove a general version of this conjecture for all self-adjoint bispectral functions of rank 1 and all self-adjoint bispectral Darboux transformations of the rank 2 Bessel and Airy functions. The method is based on a theorem giving an exact estimate of the second- and first-order terms of the growth of the Fourier algebra of each such bispectral function. From it we obtain a sharp upper bound on the order of the commuting differential operator for the integral kernel {K_{\psi}(x,y)} leading to a fast algorithmic procedure for constructing the differential operator; unlike the previous examples its order is arbitrarily high. We prove that the above classes of bispectral functions are parametrized by infinite-dimensional Grassmannians which are the Lagrangian loci of the Wilson adelic Grassmannian and its analogs in rank 2.

1996 ◽  
Vol 48 (4) ◽  
pp. 758-776 ◽  
Author(s):  
H. D. Fegan ◽  
B. Steer

AbstractWe investigate questions of spectral symmetry for certain first order differential operators acting on sections of bundles over manifolds which have a group action. We show that if the manifold is in fact a group we have simple spectral symmetry for all homogeneous operators. Furthermore if the manifold is not necessarily a group but has a compact Lie group of rank 2 or greater acting on it by isometries with discrete isotropy groups, and let D be a split invariant elliptic first order differential operator, then D has equivariant spectral symmetry.


2021 ◽  
Vol 94 (3) ◽  
Author(s):  
Gesualdo Delfino

AbstractThe two-dimensional case occupies a special position in the theory of critical phenomena due to the exact results provided by lattice solutions and, directly in the continuum, by the infinite-dimensional character of the conformal algebra. However, some sectors of the theory, and most notably criticality in systems with quenched disorder and short-range interactions, have appeared out of reach of exact methods and lacked the insight coming from analytical solutions. In this article, we review recent progress achieved implementing conformal invariance within the particle description of field theory. The formalism yields exact unitarity equations whose solutions classify critical points with a given symmetry. It provides new insight in the case of pure systems, as well as the first exact access to criticality in presence of short range quenched disorder. Analytical mechanisms emerge that in the random case allow the superuniversality of some critical exponents and make explicit the softening of first-order transitions by disorder.Graphic abstract


2007 ◽  
Vol 2007 ◽  
pp. 1-8
Author(s):  
Mehmet Sahin ◽  
Manaf Dzh. Manafov

We study some spectral problems for a second-order differential operator with periodic potential. Notice that the given potential is a sum of zero- and first-order generalized functions. It is shown that the spectrum of the investigated operator consists of infinite number of gaps whose length limit unlike the classic case tends to nonzero constant in some place and to infinity in other place.


2003 ◽  
Vol 13 (03) ◽  
pp. 287-302 ◽  
Author(s):  
André Nies

For various proper inclusions of classes of groups [Formula: see text], we obtain a group [Formula: see text] and a first-order sentence φ such that H⊨φ but no G∈ C satisfies φ. The classes we consider include the finite, finitely presented, finitely generated with and without solvable word problem, and all countable groups. For one separation, we give an example of a f.g. group, namely ℤp ≀ ℤ for some prime p, which is the only f.g. group satisfying an appropriate first-order sentence. A further example of such a group, the free step-2 nilpotent group of rank 2, is used to show that true arithmetic Th(ℕ,+,×) can be interpreted in the theory of the class of finitely presented groups and other classes of f.g. groups.


Five two-dimensional lattice models, four with rotational isomeric and excluded volume interactions and one with cross links, are used to discuss the theory of the melting transition in polymers. The models have been chosen because they are isomorphic to exactly solvable six vertex and dimer models. The orders of the thermodynamic transitions are extremely varied from model to model, including first-order, 3/2 order and infinite order transitions. These models are used to test and reveal the shortcomings of the Flory–Huggins approximate theory, which is most aptly described as an infinite dimensional theory.


2004 ◽  
Vol 2004 (22) ◽  
pp. 1151-1158 ◽  
Author(s):  
Takeshi Miura ◽  
Go Hirasawa ◽  
Sin-Ei Takahasi

Lethbe an entire function andTha differential operator defined byThf=f′+hf. We show thatThhas the Hyers-Ulam stability if and only ifhis a nonzero constant. We also consider Ger-type stability problem for|1−f′/hf|≤ϵ.


Sign in / Sign up

Export Citation Format

Share Document