scholarly journals Eichler cohomology and zeros of polynomials associated to derivatives of L-functions

2021 ◽  
Vol 2021 (770) ◽  
pp. 1-25
Author(s):  
Nikolaos Diamantis ◽  
Larry Rolen

Abstract In recent years, a number of papers have been devoted to the study of zeros of period polynomials of modular forms. In the present paper, we study cohomological analogues of the Eichler–Shimura period polynomials corresponding to higher L-derivatives. We state a general conjecture about the locations of the zeros of the full and odd parts of the polynomials, in analogy with the existing literature on period polynomials, and we also give numerical evidence that similar results hold for our higher derivative “period polynomials” in the case of cusp forms. The unimodularity of the roots seems to be a very subtle property which is special to our “period polynomials”. This is suggested by numerical experiments on families of perturbed “period polynomials” (Section 5.3) suggested by Zagier. We prove a special case of our conjecture in the case of Eisenstein series. Although not much is currently known about derivatives higher than first order ones for general modular forms, celebrated recent work of Yun and Zhang established the analogues of the Gross–Zagier formula for higher L-derivatives in the function field case. A critical role in their work was played by a notion of “super-positivity”, which, as recently shown by Goldfeld and Huang, holds in infinitely many cases for classical modular forms. As will be discussed, this is similar to properties which were required by Jin, Ma, Ono, and Soundararajan in their proof of the Riemann Hypothesis for Period Polynomials, thus suggesting a connection between the analytic nature of our conjectures here and the framework of Yun and Zhang.

Filomat ◽  
2016 ◽  
Vol 30 (12) ◽  
pp. 3253-3263
Author(s):  
Ahmet Aygunes ◽  
Yılmaz Simsek ◽  
H.M. Srivastava

In this article, we first determine a sequence {fn(?)}n?N of modular forms with weight 2nk+4(2n-1-1) (n?N; k?N\{1}; N := {1,2,3,...}). We then present some applications of this sequence which are related to the Eisenstein series and the cusp forms. We also prove that higher-order derivatives of the Weierstrass type }2n-functions are related to the above-mentioned sequence {fn(?)}n?N of modular forms.


1970 ◽  
Vol 38 ◽  
pp. 153-179 ◽  
Author(s):  
Akihiko Morimoto

In the previous paper [4] we have studied the prolongations of G-structures to tangent bundles. The purpose of the present paper is to generalize the previous prolongations and to look at them from a wide view as a special case by considering the tangent bundles of higher order. In fact, in some places, the arguments and calculations in [4] are more or less simplified. Since the usual tangent bundle T(M) of a manifold M considers only the first derivatives or first contact elements of M, the previous paper contains, in most parts, only the calculation of derivatives of first order.


2010 ◽  
Vol 06 (03) ◽  
pp. 625-653
Author(s):  
DANIEL LE ◽  
SHELLY MANBER ◽  
SHRENIK SHAH

We prove that logarithmic derivatives of certain twisted Hilbert class polynomials are holomorphic modular forms modulo p of filtration p + 1. We derive p-adic information about twisted Hecke traces and Hilbert class polynomials. In this framework, we formulate a precise criterion for p-divisibility of class numbers of imaginary quadratic fields in terms of the existence of certain cusp forms modulo p. We explain the existence of infinite classes of congruent twisted Hecke traces with fixed discriminant in terms of the factorization of the associated Hilbert class polynomial modulo p. Finally, we provide a new proof of a theorem of Ogg classifying those p for which all supersingular j-invariants modulo p lie in Fp.


1981 ◽  
Vol 46 (2) ◽  
pp. 452-456
Author(s):  
Milan Šolc

The successive time derivatives of relative entropy and entropy production for a system with a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions with an equilibrium constant smaller than or equal to one is completely monotonic in the whole definition interval, and for reactions with an equilibrium constant larger than one this function is completely monotonic at the beginning of the reaction and near to equilibrium.


1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


1949 ◽  
Vol 2 (4) ◽  
pp. 469
Author(s):  
W Freiberger ◽  
RCT Smith

In this paper we discuss the flexure of an incomplete tore in the plane of its circular centre-line. We reduce the problem to the determination of two harmonic functions, subject to boundary conditions on the surface of the tore which involve the first two derivatives of the functions. We point out the relation of this solution to the general solution of three-dimensional elasticity problems. The special case of a narrow rectangular cross-section is solved exactly in Appendix II.


2016 ◽  
Vol 12 (08) ◽  
pp. 2043-2060
Author(s):  
Dania Zantout

We define a global linear operator that projects holomorphic modular forms defined on the Siegel upper half space of genus [Formula: see text] to all the rational boundaries of lower degrees. This global operator reduces to Siegel's [Formula: see text] operator when considering only the maximal standard cusps of degree [Formula: see text]. One advantage of this generalization is that it allows us to give a general notion of cusp forms in genus [Formula: see text] and to bridge this new notion with the classical one found in the literature.


Sign in / Sign up

Export Citation Format

Share Document