scholarly journals On Weil homomorphism in locally free sheaves over structured spaces

2017 ◽  
Vol 50 (1) ◽  
pp. 28-41
Author(s):  
Ewa Falkiewicz ◽  
Wiesław Sasin

Abstract Inspired by the work of Heller and Sasin [1], we construct in this paper Weil homomorphism in a locally free sheaf W of ϕ-fields [2] over a structured space. We introduce the notion of G-consistent, linear connection on this sheaf, what allows us to clearly define Chern, Pontrjagin and Euler characteristic classes. We also show proper equalities between those classes.

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Mahir Bilen Can

International audience In this paper we study the tangent spaces of the smooth nested Hilbert scheme $\mathrm{Hilb}^{n,n-1}(\mathbb{A}^2)$ of points in the plane, and give a general formula for computing the Euler characteristic of a $\mathbb{T}^2$-equivariant locally free sheaf on $\mathrm{Hilb}^{n,n-1}(\mathbb{A}^2)$. Applying our result to a particular sheaf, we conjecture that the result is a polynomial in the variables $q$ and $t$ with non-negative integer coefficients. We call this conjecturally positive polynomial as the "nested $q,t$-Catalan series,'' for it has many conjectural properties similar to that of the $q,t$-Catalan series. Dans cet article, nous étudions les espaces tangents du schéma de Hilbert emboité lisse $\mathrm{Hilb}^{n,n-1}(\mathbb{A}^2)$ de points du plan, et donnons une formule générale pour le calcul de la caractéristique d’Euler d’un faisceau $\mathbb{T}^2$-équivariant localement libre sur $\mathrm{Hilb}^{n,n-1}(\mathbb{A}^2)$. En appliquant notre resultat a un faisceau particulier, nous conjecturons que le résultat est un polynôme en$q$ et $t$ à coefficents positifs ou nuls. Nous appelons ce polynôme conjecturalement positif la “série de $q; t$-Catalan emboîtée”, car il a de nombreuses propriétés (conjecturées) similaires à celles de la série de $q; t$-Catalan.


2018 ◽  
Vol 167 (01) ◽  
pp. 61-64 ◽  
Author(s):  
INDER KAUR

AbstractLet K be a field of characteristic 0. Fix integers r, d coprime with r ⩾ 2. Let XK be a smooth, projective, geometrically connected curve of genus g ⩾ 2 defined over K. Assume there exists a line bundle ${\cal L}_K$ on XK of degree d. In this paper we prove the existence of a stable locally free sheaf on XK with rank r and determinant ${\cal L}_K$. This trivially proves the C1 conjecture in mixed characteristic for the moduli space of stable locally free sheaves of fixed rank and determinant over a smooth, projective curve.


Author(s):  
Steven Duplij ◽  
Joshua Feinberg ◽  
Moshe Moshe ◽  
Soon-Tae Hong ◽  
Omer Faruk Dayi ◽  
...  

2019 ◽  
Vol 236 ◽  
pp. 251-310 ◽  
Author(s):  
MARC LEVINE

This paper examines Euler characteristics and characteristic classes in the motivic setting. We establish a motivic version of the Becker–Gottlieb transfer, generalizing a construction of Hoyois. Making calculations of the Euler characteristic of the scheme of maximal tori in a reductive group, we prove a generalized splitting principle for the reduction from $\operatorname{GL}_{n}$ or $\operatorname{SL}_{n}$ to the normalizer of a maximal torus (in characteristic zero). Ananyevskiy’s splitting principle reduces questions about characteristic classes of vector bundles in $\operatorname{SL}$-oriented, $\unicode[STIX]{x1D702}$-invertible theories to the case of rank two bundles. We refine the torus-normalizer splitting principle for $\operatorname{SL}_{2}$ to help compute the characteristic classes in Witt cohomology of symmetric powers of a rank two bundle, and then generalize this to develop a general calculus of characteristic classes with values in Witt cohomology.


2011 ◽  
Vol 148 (1) ◽  
pp. 209-226 ◽  
Author(s):  
Philipp Gross

AbstractWe prove that on separated algebraic surfaces every coherent sheaf is a quotient of a locally free sheaf. This class contains many schemes that are neither normal, reduced, quasiprojective nor embeddable into toric varieties. Our methods extend to arbitrary two-dimensional schemes that are proper over an excellent ring.


Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

This chapter states and proves Rost's Chain Lemma. The proof (due to Markus Rost) does not use the inductive assumption that BL(n − 1) holds. Throughout this chapter, 𝓁 is a fixed prime, and 𝑘 is a field containing 1/𝓁 and all 𝓁th roots of unity. It fixes an integer 𝑛 ≥ 2 and an 𝑛-tuple (𝑎1, ..., 𝑎𝑛) of units in 𝑘, such that the symbol ª = {𝑎1, ..., 𝑎𝑛} is nontrivial in the Milnor 𝐾-group 𝐾𝑀 𝑛(𝑘)/𝓁. The chapter produces the statement of the Chain Lemma by first proving the special case 𝑛 = 2. The notion of an 𝓁-form on a locally free sheaf over 𝑆 is then introduced, before the chapter shows how 𝓁-forms may be used to define elements of 𝐾𝑀 𝑛(𝑘(𝑆))/𝓁.


Author(s):  
Kwokwai Chan ◽  
Ziming Nikolas Ma

Abstract We apply the techniques developed in [2] to study smoothings of a pair $(X,\mathfrak{C}^*)$, where $\mathfrak{C}^*$ is a bounded perfect complex of locally free sheaves over a degenerate Calabi–Yau variety $X$. In particular, if $X$ is a projective Calabi–Yau variety admitting the structure of a toroidal crossing space and with the higher tangent sheaf $\mathcal{T}^1_X$ globally generated, and $\mathfrak{F}$ is a locally free sheaf over $X$, then we prove, using the results in [ 8], that the pair $(X,\mathfrak{F})$ is formally smoothable when $\textrm{Ext}^2(\mathfrak{F},\mathfrak{F})_0 = 0$ and $H^2(X,\mathcal{O}_X) = 0$.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nadir Fasola ◽  
Sergej Monavari ◽  
Andrea T. Ricolfi

Abstract We exploit the critical structure on the Quot scheme $\text {Quot}_{{{\mathbb {A}}}^3}({\mathscr {O}}^{\oplus r}\!,n)$ , in particular the associated symmetric obstruction theory, in order to study rank r K-theoretic Donaldson-Thomas (DT) invariants of the local Calabi-Yau $3$ -fold ${{\mathbb {A}}}^3$ . We compute the associated partition function as a plethystic exponential, proving a conjecture proposed in string theory by Awata-Kanno and Benini-Bonelli-Poggi-Tanzini. A crucial step in the proof is the fact, nontrival if $r>1$ , that the invariants do not depend on the equivariant parameters of the framing torus $({{\mathbb {C}}}^\ast )^r$ . Reducing from K-theoretic to cohomological invariants, we compute the corresponding DT invariants, proving a conjecture of Szabo. Reducing further to enumerative DT invariants, we solve the higher rank DT theory of a pair $(X,F)$ , where F is an equivariant exceptional locally free sheaf on a projective toric $3$ -fold X. As a further refinement of the K-theoretic DT invariants, we formulate a mathematical definition of the chiral elliptic genus studied in physics. This allows us to define elliptic DT invariants of ${{\mathbb {A}}}^3$ in arbitrary rank, which we use to tackle a conjecture of Benini-Bonelli-Poggi-Tanzini.


2015 ◽  
Vol 65 (1) ◽  
pp. 101-136
Author(s):  
Andrei Teleman

Sign in / Sign up

Export Citation Format

Share Document