scholarly journals Three-Dimensional Crane Modelling and Control Using Euler-Lagrange State-Space Approach and Anti-Swing Fuzzy Logic

2015 ◽  
Vol 9 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Andrei Aksjonov ◽  
Valery Vodovozov ◽  
Eduard Petlenkov

Abstract The mathematical model of the three-dimensional crane using the Euler-Lagrange approach is derived. A state-space representation of the derived model is proposed and explored in the Simulink® environment and on the laboratory stand. The obtained control design was simulated, analyzed and compared with existing encoder-based system provided by the three-dimensional (3D) Crane manufacturer Inteco®. As well, an anti-swing fuzzy logic control has been developed, simulated, and analyzed. Obtained control algorithm is compared with the existing anti-swing proportional-integral controller designed by the 3D crane manufacturer Inteco®. 5-degree of freedom (5DOF) control schemes are designed, examined and compared with the various load masses. The topicality of the problem is due to the wide usage of gantry cranes in industry. The solution is proposed for the future research in sensorless and intelligent control of complex motor driven application.

1991 ◽  
Vol 113 (4) ◽  
pp. 684-690 ◽  
Author(s):  
Ahmet Duyar ◽  
Vasfi Eldem ◽  
Walter C. Merrill ◽  
Ten-Huei Guo

A parameter and structure estimation technique for multivariable systems is used to obtain state space representation of open loop dynamics of the space shuttle main engine (SSME). The parametrization being used is both minimal and unique. The simplified linear models may be used for fault detection studies and control system design and development.


1989 ◽  
Vol 111 (3) ◽  
pp. 326-330 ◽  
Author(s):  
J. L. Dohner ◽  
R. Shoureshi

This paper produces a three-dimensional closed loop active noise control system using modal control. A state space representation of the acoustic plant was produced and then expanded to include actuator and measurement dynamics. Using this state space model and linear quadratic gaussian control theory, a single input, single output feedback filter was produced by a well-damped system. Experimental results are given. For bandlimited noise excitation, the controller produced satisfactory results.


1998 ◽  
Vol 79 (4) ◽  
pp. 1825-1838 ◽  
Author(s):  
Susan J. Goodbody ◽  
Daniel M. Wolpert

Goodbody, Susan J. and Daniel M. Wolpert. Temporal and amplitude generalization in motor learning. J. Neurophysiol. 79: 1825–1838, 1998. A fundamental feature of human motor control is the ability to vary effortlessly over a substantial range, both the duration and amplitude of our movements. We used a three-dimensional robotic interface, which generated novel velocity dependent forces on the hand, to investigate how adaptation to these altered dynamics experienced only for movements at one temporal rate and amplitude generalizes to movements made at a different rate or amplitude. After subjects had learned to make a single point-to-point movement in a novel velocity-dependent force field, we examined the generalization of this learning to movements of both half the duration or twice the amplitude. Such movements explore a state-space not experienced during learning—any changes in behavior are due to generalization of the learning, the form of which was used to probe the intrinsic constraints on the motor control process. The generalization was assessed by determining the force field in which subjects produced kinematically normal movements. We found substantial generalization of the motor learning to the new movements supporting a nonlocal representation of the control process. Of the fields tested, the form of the generalization was best characterized by linear extrapolation in a state-space representation of the controller. Such an intrinsic constraint on the motor control process can facilitate the scaling of natural movements.


1997 ◽  
Vol 119 (1) ◽  
pp. 52-59 ◽  
Author(s):  
M. J. Panza ◽  
D. P. McGuire ◽  
P. J. Jones

An integrated mathematical model for the dynamics, actuation, and control of an active fluid/elastomeric tuned vibration isolator in a two mass system is presented. The derivation is based on the application of physical principles for mechanics, fluid continuity, and electromagnetic circuits. Improvement of the passive isolator performance is obtained with a feedback scheme consisting of a frequency shaped notch compensator in series with integral control of output acceleration and combined with proportional control of the fluid pressure in the isolator. The control is applied via an electromagnetic actuator for excitation of the fluid in the track connecting the two pressure chambers of the isolator. Closed loop system equations are transformed to a nondimensional state space representation and a key dimensionless parameter for isolator-actuator interaction is defined. A numerical example is presented to show the effect of actuator parameter selection on system damping, the performance improvement of the active over the passive isolator, the robustness of the control scheme to parameter variation, and the electrical power requirements for the actuator.


Sign in / Sign up

Export Citation Format

Share Document