Properties of 0.96(Bi0.5Na0.5)TiO3-(0.04-x)BaTiO3-xLiNbO3 Lead-Free Piezoceramics Near Morphotropic Phase Boundary

2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Ya-Ting Zhang ◽  
Ying Yang ◽  
Yi-Ping Wang ◽  
Jing Chen

AbstractThe structure, dielectric and piezoelectric properties of 0.96(Bi

2014 ◽  
Vol 787 ◽  
pp. 242-246
Author(s):  
Rui Lin Wu ◽  
Tomoaki Karaki ◽  
Jiang Tao Zeng ◽  
Liao Ying Zheng ◽  
Wei Ruan ◽  
...  

Lead-based piezoelectric ceramics have excellent piezoelectric properties with the compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB)[1,2]. In these materials, the dielectric and piezoelectric properties show the maximal values at MPB. For lead-free piezoelectric ceramics, finding the MPB area is a promising way to improve their properties. In this paper, the (1-x-y)BaZrO3-x(K0.45Na0.5Li0.05)NbO3-yBi (Mg0.5Ti0.5)O3 lead-free piezoelectric ceramics were prepared by solid-state reaction method, and their piezoelectric properties and dielectric properties were investigated. With the increase of KNLN content, the crystal structure changed from rombohedral phase to tetragonal phase, thus existed a MPB[3,4] between rombohedral and tetragonal phase. At room temperature, the specimen with the composition at MPB (x=0.93, y=0.01) shows the optimal piezoelectric properties (d33=225pC/N and kp=45%), which indicates that this material is a potential lead-free piezoceramic.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250033 ◽  
Author(s):  
YUQING LEI ◽  
HONG WU ◽  
DUNMIN LIN ◽  
QIAOJI ZHENG ◽  
XIAOCHUN WU ◽  
...  

A new lead-free solid solution of (1–x) NaNbO 3-x Ba 0.85 Ca 0.15( Ti 0.9 Zr 0.1) O 3 was prepared by a traditional sintering method and its phase transition, dielectric and piezoelectric properties were studied. Ba 0.85 Ca 0.15( Ti 0.9 Zr 0.1) O 3 diffuses into NaNbO3 lattices to form a new solid solution with perovskite structure. The addition of Ba 0.85 Ca 0.15( Ti 0.9 Zr 0.1) O 3(x≥0.025) transforms NaNbO3 from antiferroelectric to ferroelectric. The diffusive ferroelectric–paraelectric phase transition is induced in the ceramics with high concentration of Ba 0.85 Ca 0.15( Ti 0.9 Zr 0.1) O 3. The ceramics with x = 0.05–0.125 possess large Pr values of 18.6–25.5 μC/cm2. A morphotropic phase boundary between tetragonal and orthorhombic phases is formed at 0.05 < x < 0.15, leading to a significant enhancement of piezoelectric properties. The ceramic with x = 0.125 situated near the morphotropic phase boundary exhibits the optimum piezoelectric properties: d33 = 151 pC/N and kp = 31.6%.


2011 ◽  
Vol 01 (04) ◽  
pp. 471-478 ◽  
Author(s):  
HONGLIANG DU ◽  
SHAOBO QU ◽  
ZHUO XU ◽  
XIAOYONG WEI ◽  
WANCHENG ZHOU ◽  
...  

In order to clarify the Na/K ratios dependence of piezoelectric properties, ( K 1-x Na x) NbO 3 ceramics were prepared by conventional solid-state sintering at x = 0.4–0.6 with a smaller compositional interval (0.02 mol). The results demonstrate that the Na/K ratios have obvious effect on piezoelectric and ferroelectric properties of ( K 1-x Na x) NbO 3 ceramics. Piezoelectric and ferroelectric properties show the maximum (d33 = 147 pC/N, kp = 0.40, and Pr = 24 μC/cm2) at x = 0.54, which is not consistent with conventional viewpoint. The reasons should be attributed to the existence of a phase boundary at x = 0.54 mol, which is similar to the morphotropic phase boundary in Pb(Zr,Ti)O3 ceramics.


2008 ◽  
Vol 23 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Seung-Ho Lee ◽  
Chang-Bun Yoon ◽  
Sung-Mi Lee ◽  
Hyoun-Ee Kim ◽  
Kyung-Woo Lee

The microstructural evolution and piezoelectric properties of lead-free ceramics (0.98-x)(Na0.5Bi0.5)TiO3–x(Na0.5K0.5)NbO3–0.02BaTiO3 (0 ⩽ x ⩽ 0.98, abbreviated as (0.98-x)NBT–xNKN–0.02BT) were investigated. The effects of the amount of NKN on the crystal structure, microstructural evolution, and piezoelectric properties were examined. The 0.93NBT–0.05NKN–0.02BT ceramics having a lower NKN content gave good performances with piezoelectric properties of d33 = 140 pC/N and kp = 21%, because of the soft additive Nb5+ ions at the B sites. However, a paraelectric cubic phase was observed in the wide range of compositions between x = 0.1 and x = 0.9. At a higher NKN content of x > 0.9, a morphotropic phase boundary (MPB) between the tetragonal and orthorhombic phases was found in the 0.015NBT–0.965NKN–0.02BT ceramics, and the piezoelectric properties were enhanced (d33 = 135 pC/N, kp = 29%). The piezoelectric properties of this system were closely related to its crystal structure.


Sign in / Sign up

Export Citation Format

Share Document