Techno-economic analysis and design of hybrid renewable energy microgrid for rural electrification

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Negasa Muleta ◽  
Altaf Q H Badar

Abstract Electricity is the most sought after resource in this world and is crucial for the development of any community. The power system structure has been changing according to the evolving scientific technologies. A novel concept in this direction is a Microgrid (MG) which is a small power system having generation and distribution with negligible presence of transmission. A MG can operate in off-grid (standalone) or grid-connected mode. The objective of this study is to perform techno-economic analysis and to design a MG model for the purpose of rural electrification. The region being considered has different resources which are capable of providing reliable supply to the load. The proposed model is compared economically with the option of grid extension. The study considers power system reliability and economic feasibility as the primary objectives for MG modelling. The village of Jarre which is located in the eastern part of Ethiopian, Somali region, is selected for this study. Particle Swarm Optimization is implemented for obtaining the most economic and reliable MG having Hybrid Renewable Energy Sources (HRES). The simulation is performed using MATLAB and Homer.

Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu

Various renewable energy sources such as wind power and photovoltaic (PV) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this paper, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability is investigated in an IEEE 16-machine 68-bus power system. Firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by the linearized state-space modeling. On this basis, converter-driven stability analyses are performed to reveal the modal resonance mechanisms of the interconnected power systems and the modal interaction phenomenon. Additionally, time-domain simulations are conducted to verify effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, an optimization strategy is further proposed by retuning the controller parameters of the HRES system. The overall results demonstrate the modal interaction effect between external AC power system and the HRES system and its various impacts on converter-driven stability.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4290
Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu ◽  
Ulas Karaagac

Renewable energy sources such as wind power and photovoltaics (PVs) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability has issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this work, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability was investigated in an IEEE 16-machine 68-bus power system. In this paper, firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by linearized state-space modeling. On this basis, converter-driven stability analysis was performed to reveal the modal resonance mechanisms between different renewable energy sources (RESs) and weak grids in the interconnected power systems and the multi-modal interaction phenomenon. Additionally, time-domain simulations were conducted to verify the effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, a multi-modal and multi-parametric optimization strategy is further proposed by retuning the controller parameters of the multi-RESs in the HRES system. The overall results demonstrate the modal interaction effect between the external AC power system and the HRES system and its various impacts on converter-driven stability.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1868
Author(s):  
Michail Katsivelakis ◽  
Dimitrios Bargiotas ◽  
Aspassia Daskalopulu ◽  
Ioannis P. Panapakidis ◽  
Lefteri Tsoukalas

Hybrid Renewable Energy Systems (HRES) are an attractive solution for the supply of electricity in remote areas like islands and communities where grid extension is difficult. Hybrid systems combine renewable energy sources with conventional units and battery storage in order to provide energy in an off-grid or on-grid system. The purpose of this study is to examine the techno-economical feasibility and viability of a hybrid system in Donoussa island, Greece, in different scenarios. A techno-economic analysis was conducted for a hybrid renewable energy system in three scenarios with different percentages of adoption rate (20%, 50% and 100%)and with different system configurations. Using HOMER Pro software the optimal system configuration between the feasible configurations of each scenario was selected, based on lowest Net Present Cost (NPC), minimum Excess Electricity percentage, and Levelized Cost of Energy (LCoE). The results obtained by the simulation could offer some operational references for a practical hybrid system in Donoussa island. The simulation results confirm the application of a hybrid system with 0% of Excess Electricity, reasonable NPC and LCoE and a decent amount of renewable integration.


Sign in / Sign up

Export Citation Format

Share Document