Potential of rod, sphere and semi-cube shaped gold nanoparticles to induce cytotoxicity and genotoxicity in human blood lymphocytes in vitro

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Mona A.M. Abo-Zeid ◽  
Thomas Liehr ◽  
Amira M. Gamal-Eldeen ◽  
Mahmoud Zawrah ◽  
Mostafa Ali ◽  
...  

AbstractGold nanoparticles (GNPs) are intended to be used in nanomedicine. Due to nanotechnology innovation GNPs of variable sizes and in different shapes including rods, spheres, cubes, etc., can easily be produced. The aim of the present studies was to evaluate the cyto-and genotoxicity inducible by different shaped GNPs on normal human peripheral blood lymphocytes.Four different shapes of GNPs including big rod GNPs (BR-GNPs, 50 nm), small rod GNPs (SR-GNPs, 30 nm), sphere GNPs (S-GNPs, 15 nm) and semi-cube GNPs (SC-GNPs, 15 nm) were studied. Cultured human blood lymphocytes were treated with different concentrations of these GNPs for 24 h in vitro. Cytotoxicity was evaluated based on the mitotic index (MI), while genotoxicity was studied by an interphase-fluorescence in situ hybridization (I-FISH) assay. The following genes were studied in I-FISH:The lowest concentration of BR-GNPs neither had an effect mitotic activity nor enhanced gain or loss of examined gene signals in a significant manner with I-FSH. Other concentrations of BR-GNPs, SR-GNPs, S-GNPs and SC-GNPs with all concentrations inhibited the mitotic activity of the cells and reduced the cell proliferation highly significantly. The different types of GNPs initiated the duplication ofGNPs at high concentration can reduce the cell proliferation and induce DNA damage. Low concentration of rod-shaped GNPs at 50 nm was safe on human lymphocytes. Further research studies are required to optimize the concentration, shape and size of GNPs before using them in nanomedicine.

2020 ◽  
Vol 42 ◽  
pp. e50517
Author(s):  
Manuela da Rocha Matos Rezende ◽  
Vivianne de Souza Velozo-Sá ◽  
Cesar Augusto Sam Tiago Vilanova-Costa ◽  
Elisangela Silveira-Lacerda

There is a concern about stablishing the clinical risk of drugs used for cancer treatment. In this study, the cytotoxic, clastogenic and genotoxic properties of cis-tetraammine(oxalato)ruthenium(III) dithionite - cis-[Ru(C2O4)(NH3)4]2(S2O6), were evaluated in vitro in human lymphocytes. The mitotic index (MI), chromosomal aberrations (CA) and DNA damage by comet assay were also analyzed. The MTT test revealed that the ruthenium compound showed a slight cytotoxic effect at the highest concentration tested. The IC50 value for the compound after 24 hours of exposure was 185.4 µM. The MI values of human peripheral blood lymphocytes treated with 0.015, 0.15, 1.5 and 150 µM of cis-[Ru(C2O4)(NH3)4]2(S2O6) were 6.1, 3.9, 3.2 and 0.2%, respectively. The lowest concentration, 0.015 µM, did not show any cytotoxic activity. The CA values for the 0.015, 0.15 and 1.5 µM concentrations presented low frequency (1.5, 1.6 and 2.3%, respectively), and did not express clastogenic activity when compared to the negative control, although it was observed clastogenic activity in the highest concentration tested (150 µM). The results obtained by the comet assay suggest that this compound does not present genotoxic activity at lower concentrations. The results show that cis-[Ru(C2O4)(NH3)4]2(S2O6) has no cytotoxic, clastogenic or genotoxic in vitro effects at concentrations less than or equal to 0.015 µM. This information proves as promising in the treatment of cancer and is crucial for future trials.


2005 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Nagarajan Rajendra Prasad ◽  
Thirunavukkarasu Mahesh ◽  
Venugopal Padmanabhan Menon ◽  
R.K Jeevanram ◽  
Kodukkur Viswanathan Pugalendi

Sign in / Sign up

Export Citation Format

Share Document