polysaccharide k
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 4)

H-INDEX

16
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7640
Author(s):  
Aarti Bains ◽  
Prince Chawla ◽  
Sawinder Kaur ◽  
Agnieszka Najda ◽  
Melinda Fogarasi ◽  
...  

It is well-known that the utilization of mushrooms as therapeutic agents is not new. Over the past years, they have been used by local individuals as food, as well as medicines, throughout the world. Nowadays, mushrooms are excessively used in the medicine, pharmacy, food, and fermentation fields as well. Wild mushrooms are of particular interest, especially Trametes versicolor (commonly known as turkey mushrooms) due to their various uses in the food and pharmaceutical industries. They represent not only a huge storehouse of vitamins, minerals, and dietary fiber, but they are also an important source of bioactive polysaccharides. They are widely used in traditional oriental therapies. The fruiting bodies are used in the preparation of health tonics and tea. The present review is necessary to explore more about this mushroom-like classical taxonomy, morphology, nutritional value, bioactivity, various health attributes, mechanism of bioactive components against various diseases, and food applications. The influence of processing processes on the nutritional properties and bioactivity of the fungus is discussed. Potential bioactive components promising health attributes of Trametes versicolor are extensively described. Additionally, several in vivo and in vitro studies have demonstrated the beneficial effects of polysaccharopeptides (PSP) and Polysaccharide-K (PSK) on the aspects related to immune function and inflammation, also presenting an anticancerous effect. Moreover, PSP and PSK were successfully described to decrease several life-threatening diseases. The potential food applications of Trametes versicolor were detailed to signify the effective utilization of the mushroom in functional food formulation.


2020 ◽  
Vol 148 ◽  
Author(s):  
Z. Y. Zhang ◽  
R. Qin ◽  
Y. H. Lu ◽  
J. Shen ◽  
S. Y. Zhang ◽  
...  

Abstract Klebsiella pneumoniae is a common pathogen associated with nosocomial infections and is characterised serologically by capsular polysaccharide (K) and lipopolysaccharide O antigens. We surveyed a total of 348 non-duplicate K. pneumoniae clinical isolates collected over a 1-year period in a tertiary care hospital, and determined their O and K serotypes by sequencing of the wbb Y and wzi gene loci, respectively. Isolates were also screened for antimicrobial resistance and hypervirulent phenotypes; 94 (27.0%) were identified as carbapenem-resistant (CRKP) and 110 (31.6%) as hypervirulent (hvKP). isolates fell into 58 K, and six O types, with 92.0% and 94.2% typeability, respectively. The predominant K types were K14K64 (16.38%), K1 (14.66%), K2 (8.05%) and K57 (5.46%), while O1 (46%), O2a (27.9%) and O3 (11.8%) were the most common. CRKP and hvKP strains had different serotype distributions with O2a:K14K64 (41.0%) being the most frequent among CRKP, and O1:K1 (26.4%) and O1:K2 (17.3%) among hvKP strains. Serotyping by gene sequencing proved to be a useful tool to inform the clinical epidemiology of K. pneumoniae infections and provides valuable data relevant to vaccine design.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Minh-Duy Phan ◽  
Brian M. Forde ◽  
Teik Min Chong ◽  
Wai-Fong Yin ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprAandlrhA) that we characterized at the molecular level. Mutation ofmprAresulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5insertion frequency upstream of thelrhAgene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCEUrinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenicEscherichia coli(UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.


Sign in / Sign up

Export Citation Format

Share Document