Robust stability analysis of LTI systems with fractional degree generalized frequency variables

2019 ◽  
Vol 22 (6) ◽  
pp. 1655-1674
Author(s):  
Cuihong Wang ◽  
Yan Guo ◽  
Shiqi Zheng ◽  
YangQuan Chen

Abstract A novel linear time-invariant (LTI) system model with fractional degree generalized frequency variables (FDGFVs) is proposed in this paper. This model can provide a unified form for many complex systems, including fractional-order systems, distributed-order systems, multi-agent systems and so on. This study mainly investigates the stability and robust stability problems of LTI systems with FDGFVs. By characterizing the relationship between generalized frequency variable and system matrix, a necessary and sufficient stability condition is firstly presented for such systems. Then for LTI systems with uncertain FDGFVs, we present a robust stability method in virtue of zero exclusion principle. Finally, the effectiveness of the method proposed in this paper is demonstrated by analyzing the robust stability of gene regulatory networks.

1994 ◽  
Vol 116 (3) ◽  
pp. 419-428 ◽  
Author(s):  
J. E. Colgate

This paper presents both theoretical and experimental studies of the stability of dynamic interaction between a feedback controlled manipulator and a passive environment. Necessary and sufficient conditions for “coupled stability”—the stability of a linear, time-invariant n-port (e.g., a robot, linearized about an operating point) coupled to a passive, but otherwise arbitrary, environment—are presented. The problem of assessing coupled stability for a physical system (continuous time) with a discrete time controller is then addressed. It is demonstrated that such a system may exhibit the coupled stability property; however, analytical, or even inexpensive numerical conditions are difficult to obtain. Therefore, an approximate condition, based on easily computed multivariable Nyquist plots, is developed. This condition is used to analyze two controllers implemented on a two-link, direct drive robot. An impedance controller demonstrates that a feedback controlled manipulator may satisfy the coupled stability property. A LQG/LTR controller illustrates specific consequences of failure to meet the coupled stability criterion; it also illustrates how coupled instability may arise in the absence of force feedback. Two experimental procedures—measurement of endpoint admittance and interaction with springs and masses—are introduced and used to evaluate the above controllers. Theoretical and experimental results are compared.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Niu Jie ◽  
Li Zhong

This paper studies the sampled-data based consensus of multiagent system with general linear time-invariant dynamics. It focuses on looking for a maximum allowable sampling period bound such that as long as the sampling period is less than this bound, there always exist linear consensus protocols solving the consensus problem. Both fixed and randomly switching topologies are considered. For systems under fixed topology, a necessary and sufficient sampling period bound is obtained for single-input multiagent systems, and a sufficient allowable bound is proposed for multi-input systems by solving theH∞optimal control problem of certain system with uncertainty. For systems under randomly switching topologies, tree-type and complete broadcasting network with Bernoulli packet losses are discussed, and explicit allowable sampling period bounds are, respectively, given based on the unstable eigenvalues of agent’s system matrix and packet loss probability. Numerical examples are given to illustrate the results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Radek Matušů ◽  
Bilal Şenol ◽  
Libor Pekař

The main aim of this paper is to present and compare three approaches to uncertainty modeling and robust stability analysis for fractional-order (FO) linear time-invariant (LTI) single-input single-output (SISO) uncertain systems. The investigated objects are described either via FO models with parametric uncertainty, by means of FO unstructured multiplicative uncertainty models, or through FO unstructured additive uncertainty models, while the unstructured models are constructed on the basis of appropriate selection of a nominal plant and a weight function. Robust stability investigation for systems with parametric uncertainty uses the combination of plotting the value sets and application of the zero exclusion condition. For the case of systems with unstructured uncertainty, the graphical interpretation of the utilized robust stability test is based mainly on the envelopes of the Nyquist diagrams. The theoretical foundations are followed by two extensive, illustrative examples where the plant models are created; the robust stability of feedback control loops is analyzed, and obtained results are discussed.


Author(s):  
Hamed Taghavian ◽  
Mohammad Saleh Tavazoei

Bounded-input bounded-output (BIBO) stability of distributed-order linear time-invariant (LTI) systems with uncertain order weight functions and uncertain dynamic matrices is investigated in this paper. The order weight function in these uncertain systems is assumed to be totally unknown lying between two known positive bounds. First, some properties of stability boundaries of fractional distributed-order systems with respect to location of eigenvalues of dynamic matrix are proved. Then, on the basis of these properties, it is shown that the stability boundary of distributed-order systems with the aforementioned uncertain order weight functions is located in a certain region on the complex plane defined by the upper and lower bounds of the order weight function. Thereby, sufficient conditions are obtained to ensure robust stability in distributed-order LTI systems with uncertain order weight functions and uncertain dynamic matrices. Numerical examples are presented to verify the obtained results.


Author(s):  
Rama K. Yedavalli

This paper revisits the problem of checking the robust stability of matrix families generated by ‘Unstructured Convex Combinations’ of user supplied or externally supplied Vertex Matrices. A previous solution given by the author for this problem involved complete dependence on the quantitative (eigenvalue information) of a set of special matrices labeled the Kronecker Nonsingularity (KN) matrices. In this solution, the ‘convexity’ property is not explicit and transparent, to the extent that, unfortunately, the accuracy of the solution itself is being questioned and not embraced by the peer community. To erase this unforunate and unwarranted image of this author (in this specific problem) in the minds of the peer community, in this paper, the author treads a new path to find a solution that brings out the convexity property in an explicit and understandable way. In the new solution presented in this paper, we combine the qualitative (sign) as well as quantitative (magnitude) information of these KN matrices and present a vertex solution in which the convexity property of the solution is transparent making it more elegant and accepatble to the peer community, than the previous solution. The new solution clearly underscores the importance of using the sign structure of a matrix in assessing the stability of a matrix. This new solution is made possible by the new insight provided by the qualitative (sign) stability/instability derived from ecological principles. Examples are given which clearly demonstrate effectiveness of the new, convexity based algorithm. It is hoped that this new solution will be embraced by the peer community.


2006 ◽  
Vol 129 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of linear time invariant (LTI) systems with rationally independent multiple time delays is presented in this paper. The independence of delays makes the problem much more challenging compared to systems with commensurate time delays (where the delays have rational relations). We uncover some wonderful features for such systems. For instance, all the imaginary characteristic roots of these systems can be found exhaustively along a set of surfaces in the domain of the delays. They are called the “kernel” surfaces (curves for two-delay cases), and it is proven that the number of the kernel surfaces is manageably small and bounded. All possible time delay combinations, which yield an imaginary characteristic root, lie either on this kernel or its infinitely many “offspring” surfaces. Another hidden feature is that the root tendencies along these surfaces exhibit an invariance property. From these outstanding characteristics an efficient, exact, and exhaustive methodology results for the stability assessment. As an added uniqueness of this method, the systems under consideration do not have to be stable for zero delays. Several example case studies are presented, which are prohibitively difficult, if not impossible to solve using any other peer methodology known to the authors.


Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Mojtaba Soorki ◽  
Mohammad Tavazoei

AbstractThis paper deals with fractional-order linear time invariant swarm systems. Necessary and sufficient conditions for asymptotic swarm stability of these systems are presented. Also, based on a time response analysis the speed of convergence in an asymptotically swarm stable fractional-order linear time invariant swarm system is investigated and compared with that of its integer-order counterpart. Numerical simulation results are presented to show the effectiveness of the paper results.


Sign in / Sign up

Export Citation Format

Share Document