Determination of the fractional order in semilinear subdiffusion equations

2020 ◽  
Vol 23 (3) ◽  
pp. 694-722
Author(s):  
Mykola Krasnoschok ◽  
Sergei Pereverzyev ◽  
Sergii V. Siryk ◽  
Nataliya Vasylyeva

AbstractWe analyze the inverse boundary value-problem to determine the fractional order ν of nonautonomous semilinear subdiffusion equations with memory terms from observations of their solutions during small time. We obtain an explicit formula reconstructing the order. Based on the Tikhonov regularization scheme and the quasi-optimality criterion, we construct the computational algorithm to find the order ν from noisy discrete measurements. We present several numerical tests illustrating the algorithm in action.

2014 ◽  
Vol 19 (2) ◽  
pp. 241-256 ◽  
Author(s):  
Yashar T. Mehraliyev ◽  
Fatma Kanca

In this paper, the inverse problem of finding a coefficient in a second order elliptic equation is investigated. The conditions for the existence and uniqueness of the classical solution of the problem under consideration are established. Numerical tests using the finite-difference scheme combined with an iteration method is presented and the sensitivity of this scheme with respect to noisy overdetermination data is illustrated.


2021 ◽  
pp. 104017
Author(s):  
Supriya Yadav ◽  
Devendra Kumar ◽  
Jagdev Singh ◽  
Dumitru Baleanu

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. F. Imaga ◽  
S. A. Iyase

AbstractIn this work, we consider the solvability of a fractional-order p-Laplacian boundary value problem on the half-line where the fractional differential operator is nonlinear and has a kernel dimension equal to two. Due to the nonlinearity of the fractional differential operator, the Ge and Ren extension of Mawhin’s coincidence degree theory is applied to obtain existence results for the boundary value problem at resonance. Two examples are used to validate the established results.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
R. Dhineshbabu ◽  
S. Rashid ◽  
M. Rehman

Abstract The results reported in this paper are concerned with the existence and uniqueness of solutions of discrete fractional order two-point boundary value problem. The results are developed by employing the properties of Caputo and Riemann–Liouville fractional difference operators, the contraction mapping principle and the Brouwer fixed point theorem. Furthermore, the conditions for Hyers–Ulam stability and Hyers–Ulam–Rassias stability of the proposed discrete fractional boundary value problem are established. The applicability of the theoretical findings has been demonstrated with relevant practical examples. The analysis of the considered mathematical models is illustrated by figures and presented in tabular forms. The results are compared and the occurrence of overlapping/non-overlapping has been discussed.


Sign in / Sign up

Export Citation Format

Share Document