scholarly journals Brandt Extensions and Primitive Topological Inverse Semigroups

2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Tetyana Berezovski ◽  
Oleg Gutik ◽  
Kateryna Pavlyk

We study (countably) compact and (absolutely) -closed primitive topological inverse semigroups. We describe the structure of compact and countably compact primitive topological inverse semigroups and show that any countably compact primitive topological inverse semigroup embeds into a compact primitive topological inverse semigroup.

1983 ◽  
Vol 26 (2) ◽  
pp. 151-162 ◽  
Author(s):  
T. E. Hall ◽  
P. R. Jones

After preliminary results and definitions in Section 1, we show in Section 2 that any finite regular semigroup is saturated, in the sense of Howie and Isbell [8] (that is, the dominion of a finite regular semigroup U in a strictly containing semigroup S is never S). This is equivalent of course to showing that in the category of semigroups any epi from a finite regular semigroup is in fact onto. Note for inverse semigroups the stronger result, that any inverse semigroup is absolutely closed [11, Theorem VII. 2.14] or [8, Theorem 2.3]. Further, any inverse semigroup is in fact an amalgamation base in the class of semigroups [10], in the sense of [5]. These stronger results are known to be false for finite regular semigroups [8, Theorem 2.9] and [5, Theorem 25]. Whether or not every regular semigroup is saturated is an open problem.


2016 ◽  
Vol 94 (3) ◽  
pp. 457-463 ◽  
Author(s):  
PETER R. JONES

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.


1978 ◽  
Vol 19 (1) ◽  
pp. 59-65 ◽  
Author(s):  
H. Mitsch

The natural order of an inverse semigroup defined by a ≤ b ⇔ a′b = a′a has turned out to be of great importance in describing the structure of it. In this paper an order-theoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, ≤) is shown to be the zero of (S, ·); the existence of a greatest element is equivalent to the fact, that (S, ·) is a semilattice; (S, ≤) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, ≤) is totally ordered, if and only if for all a, b ∈ S, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and right-distributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.


2001 ◽  
Vol 44 (3) ◽  
pp. 549-569 ◽  
Author(s):  
Benjamin Steinberg

AbstractAdapting the theory of the derived category to ordered groupoids, we prove that every ordered functor (and thus every inverse and regular semigroup homomorphism) factors as an enlargement followed by an ordered fibration. As an application, we obtain Lawson’s version of Ehresmann’s Maximum Enlargement Theorem, from which can be deduced the classical theory of idempotent-pure inverse semigroup homomorphisms and $E$-unitary inverse semigroups.AMS 2000 Mathematics subject classification: Primary 20M18; 20L05; 20M17


1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


Author(s):  
D. B. McAlister

SynopsisThe aim of this paper is to describe the free product of a pair G, H of groups in the category of inverse semigroups. Since any inverse semigroup generated by G and H is a homomorphic image of this semigroup, this paper can be regarded as asking how large a subcategory, of the category of inverse semigroups, is the category of groups? In this light, we show that every countable inverse semigroup is a homomorphic image of an inverse subsemigroup of the free product of two copies of the infinite cyclic group. A similar result can be obtained for arbitrary cardinalities. Hence, the category of inverse semigroups is generated, using algebraic constructions by the subcategory of groups.The main part of the paper is concerned with obtaining the structure of the free product G inv H, of two groups G, H in the category of inverse semigroups. It is shown in section 1 that G inv H is E-unitary; thus G inv H can be described in terms of its maximum group homomorphic image G gp H, the free product of G and H in the category of groups, and its semilattice of idempotents. The second section considers some properties of the semilattice of idempotents while the third applies these to obtain a representation of G inv H which is faithful except when one group is a non-trivial finite group and the other is trivial. This representation is used in section 4 to give a structure theorem for G inv H. In this section, too, the result described in the first paragraph is proved. The last section, section 5, consists of examples.


2019 ◽  
Vol 31 (3) ◽  
pp. 543-562 ◽  
Author(s):  
Viviane Beuter ◽  
Daniel Gonçalves ◽  
Johan Öinert ◽  
Danilo Royer

Abstract Given a partial action π of an inverse semigroup S on a ring {\mathcal{A}} , one may construct its associated skew inverse semigroup ring {\mathcal{A}\rtimes_{\pi}S} . Our main result asserts that, when {\mathcal{A}} is commutative, the ring {\mathcal{A}\rtimes_{\pi}S} is simple if, and only if, {\mathcal{A}} is a maximal commutative subring of {\mathcal{A}\rtimes_{\pi}S} and {\mathcal{A}} is S-simple. We apply this result in the context of topological inverse semigroup actions to connect simplicity of the associated skew inverse semigroup ring with topological properties of the action. Furthermore, we use our result to present a new proof of the simplicity criterion for a Steinberg algebra {A_{R}(\mathcal{G})} associated with a Hausdorff and ample groupoid {\mathcal{G}} .


1996 ◽  
Vol 06 (05) ◽  
pp. 541-551
Author(s):  
TERUO IMAOKA ◽  
ISAMU INATA ◽  
HIROAKI YOKOYAMA

The first author obtained a generalization of Preston-Vagner Representation Theorem for generalized inverse *-semigroups. In this paper, we shall generalize their results for locally inverse *-semigroups. Firstly, by introducing a concept of a π-set (which is slightly different from the one in [7]), we shall construct the π-symmetric locally inverse *-semigroup on a π-set, and show that any locally inverse *-semigroup can be embedded up to *-isomorphism in the π-symmetric locally inverse semigroup on a π-set. Moreover, we shall obtain that the wreath product of locally inverse *-semigroups is also a locally inverse *-semigroup.


1981 ◽  
Vol 22 (2) ◽  
pp. 159-165 ◽  
Author(s):  
P. R. Jones

The structure of semigroups whose subsemigroups form a chain under inclusion was determined by Tamura [9]. If we consider the analogous problem for inverse semigroups it is immediate that (since idempotents are singleton inverse subsemigroups) any inverse semigroup whose inverse subsemigroups form a chain is a group. We will therefore, continuing the approach of [5, 6], consider inverse semigroups whose full inverse subsemigroups form a chain: we call these inverse ▽-semigroups.


Sign in / Sign up

Export Citation Format

Share Document