scholarly journals An integrated petrophysical-based wedge modeling and thin bed AVO analysis for improved reservoir characterization of Zhujiang Formation, Huizhou sub-basin, China: A case study

2020 ◽  
Vol 12 (1) ◽  
pp. 256-274
Author(s):  
Wasif Saeed ◽  
Hongbing Zhang ◽  
Qiang Guo ◽  
Aamir Ali ◽  
Tahir Azeem ◽  
...  

AbstractThe main reservoir in Huizhou sub-basin is Zhujiang Formation of early Miocene age. The petrophysical analysis shows that the Zhujiang Formation contains thin carbonate intervals, which have good hydrocarbon potential. However, the accurate interpretation of thin carbonate intervals is always challenging as conventional seismic interpretation techniques do not provide much success in such cases. In this study, well logs, three-layer forward amplitude versus offset (AVO) model and the wedge model are integrated to analyze the effect of tuning thickness on AVO responses. It is observed that zones having a thickness greater than or equal to 15 m can be delineated with seismic data having a dominant frequency of more than 45 Hz. The results are also successfully verified by analyzing AVO attributes, i.e., intercept and gradient. The study will be helpful to enhance the characterization of thin reservoir intervals and minimize the risk of exploration in the Huizhou sub-basin, China.

2019 ◽  
Vol 2 (4) ◽  

The reservoir characterization of Buma Field, Niger Delta using seismic and well log data is the focus of this research. Seismic data in SEG-Y format and suites of well logs have been used to achieve the aim and objectives of the research. Methodologies used in this work are standard methods used in this kind of research. Results of the analysis seismic data shows fifteen faults have been identified, nine trend NW-SE and are antithetic faults whereas the six trend NESW and are synthetic faults. These faults formed closures and could act as trapping mechanisms for hydrocarbon in the identified horizons/reservoirs. Two hydrocarbon bearing horizons D and F have been mapped on the seismic and analysis of the well logs showed that sand and shale are major lithologies in the studied wells. Well correlation showed similarities in geological properties such as lithology, reservoir tops and petrophysical properties. Volumetric estimation carried out on the two reservoirs showed Reservoir D having average thickness of 26.73 ft., area of 3784.89 acres, bulk volume of 4407x106 ft3 , net volume of 4226x106 ft3 , pore volume of 216 x106 RB, hydrocarbon pore volume (oil) of 143x106 RB and STOIIP of 77 MMSTB. Reservoir F has an average thickness of 41.55 ft., area of 2790.63 acres, bulk volume of 5051x106 ft3, net volume of 4769x10106 ft3 , pore volume of 248x10106 RB, hydrocarbon pore volume (oil) of 167x10106 RB and STOIIP of 88 MMSTB. Integrating results of structural interpretation, well log analysis, petrophysical properties and volumetric estimation it is evident that both reservoirs have very good porosities and excellent permeability, good thicknesses of productive sand and reduced water saturation as to aid storage and easy flow of hydrocarbon pore fluids. Therefore, the two Buma Field Reservoirs D and F are prolific with hydrocarbon pore fluids (oil) which can be exploited economically


2021 ◽  
Author(s):  
Stanley Oifoghe ◽  
Nora Alarcon ◽  
Lucrecia Grigoletto

Abstract Hydrocarbons are bypassed in known fields. This is due to reservoir heterogeneities, complex lithology, and limitations of existing technology. This paper seeks to identify the scenarios of bypassed hydrocarbons, and to highlight how advances in reservoir characterization techniques have improved assessment of bypassed hydrocarbons. The present case study is an evaluation well drilled on the continental shelf, off the West African Coastline. The targeted thin-bedded reservoir sands are of Cenomanian age. Some technologies for assessing bypassed hydrocarbon include Gamma Ray Spectralog and Thin Bed Analysis. NMR is important for accurate reservoir characterization of thinly bedded reservoirs. The measured NMR porosity was 15pu, which is 42% of the actual porosity. Using the measured values gave a permeability of 5.3mD as against the actual permeability of 234mD. The novel model presented in this paper increased the porosity by 58% and the permeability by 4315%.


2020 ◽  
Vol 21 (3) ◽  
pp. 129
Author(s):  
Ade Yogi

This study presents petrophysics analysis results from two wells located in the Arafura Basin. The analysis carried out to evaluate the reservoir characterization and its relationship to the stratigraphic sequence based on log data from the Koba-1 and Barakan-1 Wells. The stratigraphy correlation section of two wells depicts that in the Cretaceous series a transgression-regression cycle. The petrophysical parameters to be calculated are the shale volume and porosity. The analysis shows that there is a relationship between stratigraphic sequences and petrophysical properties. In the study area, shale volumes used to make complete rock profiles in wells assisted by biostratigraphic data, cutting descriptions, and core descriptions. At the same time, porosity shows a conformity pattern with the transgression-regression cycle.Keywords: petrophysics, reservoir characterization, Cretaceous, transgressive-regressive cycle


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 978-993 ◽  
Author(s):  
Jo Eidsvik ◽  
Per Avseth ◽  
Henning Omre ◽  
Tapan Mukerji ◽  
Gary Mavko

Reservoir characterization must be based on information from various sources. Well observations, seismic reflection times, and seismic amplitude versus offset (AVO) attributes are integrated in this study to predict the distribution of the reservoir variables, i.e., facies and fluid filling. The prediction problem is cast in a Bayesian setting. The a priori model includes spatial coupling through Markov random field assumptions and intervariable dependencies through nonlinear relations based on rock physics theory, including Gassmann's relation. The likelihood model relating observations to reservoir variables (including lithology facies and pore fluids) is based on approximations to Zoeppritz equations. The model assumptions are summarized in a Bayesian network illustrating the dependencies between the reservoir variables. The posterior model for the reservoir variables conditioned on the available observations is defined by the a priori and likelihood models. This posterior model is not analytically tractable but can be explored by Markov chain Monte Carlo (MCMC) sampling. Realizations of reservoir variables from the posterior model are used to predict the facies and fluid‐filling distribution in the reservoir. A maximum a posteriori (MAP) criterion is used in this study to predict facies and pore‐fluid distributions. The realizations are also used to present probability maps for the favorable (sand, oil) occurrence in the reservoir. Finally, the impact of seismic AVO attributes—AVO gradient, in particular—is studied. The approach is demonstrated on real data from a turbidite sedimentary system in the North Sea. AVO attributes on the interface between reservoir and cap rock are extracted from 3D seismic AVO data. The AVO gradient is shown to be valuable in reducing the ambiguity between facies and fluids in the prediction.


2021 ◽  
Vol 73 (02) ◽  
pp. 68-69
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200577, “Applications of Artificial Neural Networks for Seismic Facies Classification: A Case Study From the Mid-Cretaceous Reservoir in a Supergiant Oil Field,” by Ali Al-Ali, Karl Stephen, SPE, and Asghar Shams, Heriot-Watt University, prepared for the 2020 SPE Europec featured at the 82nd EAGE Conference and Exhibition, originally scheduled to be held in Amsterdam, 1-3 December. The paper has not been peer reviewed. Facies classification using data from sources such as wells and outcrops cannot capture all reservoir characterization in the interwell region. Therefore, as an alternative approach, seismic facies classification schemes are applied to reduce the uncertainties in the reservoir model. In this study, a machine-learning neural network was introduced to predict the lithology required for building a full-field Earth model for carbonate reservoirs in southern Iraq. The work and the methodology provide a significant improvement in facies classification and reveal the capability of a probabilistic neural network technique. Introduction The use of machine learning in seismic facies classification has increased gradually during the past decade in the interpretation of 3D and 4D seismic volumes and reservoir characterization work flows. The complete paper provides a literature review regarding this topic. Previously, seismic reservoir characterization has revealed the heterogeneity of the Mishrif reservoir and its distribution in terms of the pore system and the structural model. However, the main objective of this work is to classify and predict the heterogeneous facies of the carbonate Mishrif reservoir in a giant oil field using a multilayer feed-forward network (MLFN) and a probabilistic neural network (PNN) in nonlinear facies classification techniques. A related objective was to find any domain-specific causal relationships among input and output variables. These two methods have been applied to classify and predict the presence of different facies in Mishrif reservoir rock types. Case Study Reservoir and Data Set Description. The West Qurna field is a giant, multibillion-barrel oil field in the southern Mesopotamian Basin with multiple carbonate and clastic reservoirs. The overall structure of the field is a north/south trending anticline steep on the western flank and gentle on the eastern flank. Many producing reservoirs developed in this oil field; however, the Mid- Cretaceous Mishrif reservoir is the main producing reservoir. The reservoir consists of thick carbonate strata (roughly 250 m) deposited on a shallow water platform adjacent to more-distal, deeper-water nonreservoir carbonate facies developing into three stratigraphic sequence units in the second order. Mishrif facies are characterized by a porosity greater than 20% and large permeability contrast from grainstones to microporosity (10-1000 md). The first full-field 3D seismic data set was achieved over 500 km2 during 2012 and 2013 in order to plan the development of all field reservoirs. A de-tailed description of the reservoir has been determined from well logs and core and seismic data. This study is mainly based on facies log (22 wells) and high-resolution 3D seismic volume to generate seismic attributes as the input data for the training of the neural network model. The model is used to evaluate lithofacies in wells without core data but with appropriate facies logs. Also, testing was carried out in parallel with the core data to verify the results of facies classification.


Sign in / Sign up

Export Citation Format

Share Document