scholarly journals Planktonic foraminiferal turnover across the Cenomanian – Turonian boundary (OAE2) in the northeast of the Tethys realm, Kopet-Dagh Basin

2016 ◽  
Vol 67 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Behnaz Kalanat ◽  
Mohammad Vahidinia ◽  
Hossein Vaziri-Moghaddam ◽  
Mohamad Hossein Mahmudy-Gharaie

Abstract Two Late Cenomanian – Early Turonian (C–T) intervals of the eastern part of the Kopet-Dagh basin, NE Iran have been investigated to evaluate the response of planktonic foraminifera to the geological event OAE2. The Gharesu and Taherabad sections with the thicknesses of 30 m and 22.5 m are composed of shale and marl interbedded with glauconitic sandstone. Three biozones Rotalipora cushmani, Whiteinella archaeocretacea and Helvetoglobotruncana helvetica were recognized based on study of planktonic foraminifera, in these sections. We observed the patterns of planktonic foraminiferal assemblage changes around the C–T boundary and divided this succession into several successive intervals. This study confirms that OAE2 was a long term event. A gradual perturbation in the study successions starts in the interval 1 with low abundance and diversity of planktonic foraminifera. An enhanced oxygen minimum zone (OMZ) occurs in the interval 3 which coincides with a temporary absence of planktonic foraminifera and sedimentation of framboidal pyrite. High diversity of planktonic foraminifera and appearance of new genera in the interval 5 indicate return of normal conditions to the basin. A significant short-term sea surface temperature cooling is also indicated by planktonic foraminiferal turnover and carbonate contents in the interval 2 which is comparable with other parts of the Tethys Ocean, Boreal sea and Atlantic region.

2005 ◽  
Vol 24 (1) ◽  
pp. 55-75 ◽  
Author(s):  
David W. Haig

Abstract. Diverse foraminifera, Lingula-like brachiopods and the geological setting indicate that Aptian radiolarian-rich black shales forming the Windalia Radiolarite were deposited at water depths probably less than 40 m in the Southern Carnarvon Basin. Elsewhere in Australia, coeval radiolarian-rich deposits are widespread in other western-margin basins and in vast interior basins. The organic-rich mudstones containing the radiolaria include the foraminiferal Ammobaculites Association, a sparse benthic macrofauna and kerogens of mainly terrestrial plant origin. The deposits suggest that there was substantial high-nutrient freshwater input into the epeiric seas as well as high levels of dissolved silica resulting from marine flooding of a mature silicate-rich landscape bordered on the eastern and western continental margins by large volcanic provinces. The widespread presence of organic-rich muds through the broad, shallow Southern Carnarvon Basin and through the coeval interior basins suggests that regional geomorphology controlled the distribution of eutrophic facies in the Australian Aptian rather than any global expansion of the oceanic oxygen minimum zone. The foraminiferal assemblage from the Windalia Radiolarite consists of calcareous hyaline benthic types (diverse Lagenida as well as abundant Lingulogavelinella, Epistomina and Coryphostoma) and organic-cemented agglutinated species (including common Ammobaculites humei, Haplophragmoides–Recurvoides spp., and Verneuilinoides howchini). Planktonic foraminifera are very rare and present only in the northern, more open part of the basin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Espinoza-Morriberón ◽  
V. Echevin ◽  
D. Gutiérrez ◽  
J. Tam ◽  
M. Graco ◽  
...  

AbstractDeoxygenation is a major threat to the coastal ocean health as it impacts marine life and key biogeochemical cycles. Understanding its drivers is crucial in the thriving and highly exploited Peru upwelling system, where naturally low-oxygenated subsurface waters form the so-called oxygen minimum zone (OMZ), and a slight vertical shift in its upper limit may have a huge impact. Here we investigate the long-term deoxygenation trends in the upper part of the nearshore OMZ off Peru over the period 1970–2008. We use a unique set of dissolved oxygen in situ observations and several high-resolution regional dynamical-biogeochemical coupled model simulations. Both observation and model present a nearshore deoxygenation above 150 m depth, with a maximum trend of – 10 µmol kg−1 decade1, and a shoaling of the oxycline depth (− 6.4 m decade−1). Model sensitivity analysis shows that the modeled oxycline depth presents a non-significant (+ 0.9 m decade−1) trend when remote forcing is suppressed, while a significant oxycline shoaling (− 3 m decade−1) is obtained when the wind variability is suppressed. This indicates that the nearshore deoxygenation can be attributed to the slowdown of the near-equatorial eastward currents, which transport oxygen-rich waters towards the Peruvian shores. The large uncertainties in the estimation of this ventilation flux and the consequences for more recent and future deoxygenation trends are discussed.


2004 ◽  
Vol 175 (6) ◽  
pp. 561-572 ◽  
Author(s):  
Delphine Desmares ◽  
Danièle Grosheny ◽  
Bernard Beaudoin ◽  
Silvia Gardin ◽  
François Gauthier-Lafaye

Abstract Five altered volcanic-ash beds have been correlated near the Cenomanian-Turonian stage boundary through much of the Western Interior Basin. These instantaneous events constitute independent chronostratigraphic marker-beds enabling the synchroneity of lithological, biological or geochemical records to be tested. In this way, the Greenhorn Sea is a unique place where the potentiality of this high-resolution stratigraphic tool is illustrated. The Cenomanian-Turonian interval is the ideal period for this sort of study because major oceanic changes, including the global expansion of the oxygen minimum zone, are recognised across OAE2 event, involving the disappearance of Rotalipora, complex keeled foraminifera which previously occupied deep oceanic waters. Biostratigraphic data coupled with bentonite correlation, in several sections of Colorado, show the diachronism of the occurrences of R. cushmani and H. helvetica. Consequently, the extension of the W. archaeocretacea partial range zone is extremely variable at the regional scale. Thus, this association has a low temporal value. Planktonic foraminiferal analyses also reveal an A. multiloculata event in the M. mosbyense zone. During tens of thousands of years, this species, plentiful in the Western Interior Basin, multiplies and prevails on Rotalipora before a gradual decline. Rotalipora gave rise to Anaticinella by the atrophy of its keel. Thus, Anaticinella may stay in shallower habitats and avoid the expansion of the oxygen minimum zone. However, even if this adaptation allowed a return to the surface water, this selective advantage would not be enough for Anaticinella to survive the ecologically drastic modifications. Extinction of Anaticinella and its ancestor Rotalipora occurred contemporaneously. Carbon stable isotope analyses show that main paleoceanographic events have occurred at Pueblo during the Cenomanian-Turonian stage boundary. The initial rapid increase and first peak of δ13C indicate the first anoxic event (event 1) before a decrease in values and a main manganese enrichment which are the evidence for a well-oxygenated environment (event 2). This assumption is supported by the occurrence of an abundant and diversified benthic community at the same interval. The second increase in δ13C proxies signs the rise of anoxia (event 3). The temporal distribution of these events with the bentonite marker beds and the ammonite biostratigraphy attest to the synchroneity of events 2 and 3 over 600 km between the Pueblo and Lohali Point sections. The absence of event 1 at Lohali Point in the S. gracile zone implies the existence of a hiatus. Thus, thanks to the five bentonite marker beds, extending from the S. gracile to the M. nodosoides ammonite zone over 2 Ma, we have not only achieved precise regional correlation but, dealing with facies variations, our observations also indicate gaps in the sedimentary record. Thus, in detail, some thin levels expressed in Pueblo (reference section) cannot be correlated in any other eastern sections. Furthermore, supposed continuous sections may contain important hiatuses. An example is given at El Vado (New Mexico) where two bentonite marker beds are missing. In spite of the lack of significant planktonic foraminifera, the indications provided by bentonite geometries and by nannofossils reveal the existence of a hiatus of at least 850 kyr. It could be explained by the location of the area along the trend of a tectonic forebulge linked to the Sevier orogeny. This bathymetric high had great consequences on the currents flows in this large interior sea where tethysian and boreal water masses competed.


ZooKeys ◽  
2018 ◽  
Vol 751 ◽  
pp. 75-112 ◽  
Author(s):  
Samuel Gómez

Investigations on the effects of the oxygen minimum zone on the distribution, abundance, and diversity of deep-sea benthic and pelagic fauna of the Gulf of California and Eastern Tropical Pacific has received attention recently. However, very little is known about the diversity of deep-sea benthic harpacticoids from this region, and only three species,AncorabolushendrickxiGómez & Conroy-Dalton, 2002,CeratonotuselongatusGómez & Díaz, 2017 andDendropsylluscaliforniensisGómez & Díaz, 2017, have been described so far. The genusMesocletodesSars, 1909 is one of the most common and abundant genera of deep-sea harpacticoids. This genus has been traditionally subdivided into two species groups, theabyssicolaand theinermisgroups, based on the presence/absence of a dorsal cuticular process on the cephalothorax and anal somite, but some species have been reported to deviate from this scheme. As a result of their investigations, other researchers proposed the monophyly of theabyssicolagroup, and suggested the probable monophyly of two other species-groups. In this paper, the descriptions of three new species of the genusMesocletodesfrom the deep sea of the Gulf of California are presented with some notes on their relationships with other species. Some comments on the monophyly of the genus are given.


1990 ◽  
Vol 5 ◽  
pp. 210-235 ◽  
Author(s):  
William P. Elder

Extensive species-level, marine biotic turnover is recorded across the Cenomanian-Turonian (C-T) Stage boundary in the western interior of the United States (Fig. 1) and intercontinentally (e.g., Wright and Kennedy, 1981; Elder, 1987; Jarvis et al., 1988). Widespread intensification and expansion of the oxygen minimum zone have been widely proposed as a causal mechanism for the organic-rich deposits and biotic extinctions found in strata of this age (e.g., Schlanger et al., 1987; Jarvis et al., 1988). Accompanying these extinctions were large-scale reorganizations of community compositions and trophic structures. In the western interior, repeated community replacement was associated with widespread cyclic sedimentation, and long-term community turnover was related to extended periods of dysaerobia and possibly low salinity conditions. Community compositions and distributions were therefore largely controlled by physical rather than biological factors. This paper will document how these oceanographic and sedimentologic factors affected community patterns across the C-T boundary.


2021 ◽  
Author(s):  
Dante Espinoza-Morriberón ◽  
Vincent Echevin ◽  
Dimitri Gutiérrez ◽  
Jorge Tam ◽  
Michelle Graco ◽  
...  

Abstract Deoxygenation is a major threat to the coastal ocean health as it impacts marine life and key biogeochemical cycles. Understanding its drivers is crucial in the thriving and highly exploited Peru upwelling system, where naturally low-oxygenated subsurface waters form the so-called oxygen minimum zone, and a slight vertical shift in its upper limit may have a huge impact. Here we investigate the long-term deoxygenation trends in the upper part of the nearshore oxygen minimum zone off Peru over the period 1970-2008. We use a unique set of dissolved oxygen in situ observations and several high resolution regional dynamical-biogeochemical coupled model simulations. The upper part of the oxygen minimum zone appears to lose oxygen over the period, particularly off Northern Peru, a trend well reproduced by the model. Model simulations attribute the deoxygenation to the slowdown of the near-equatorial eastward currents, which transport oxygen toward the Peruvian shores. The large uncertainties in the estimation of this ventilation flux and the consequences for more recent and future deoxygenation trends are discussed.


2014 ◽  
Vol 152 (5) ◽  
pp. 788-801 ◽  
Author(s):  
BRENT WILSON ◽  
LEE-ANN C. HAYEK

AbstractThe lower bathyal Ocean Drilling Program Hole 1261A was sampled near an upper Quaternary oxygen minimum zone (OMZ). Glauconite, the percentage of the foraminiferal assemblage as benthic specimens and assemblage composition were used to investigate the behaviour of the OMZ. Benthic foraminifera and glauconite were comparable with the upper margin of the modern OMZ off California. The percentage abundances of U. peregrina and C. laevigata were on the Demerara Rise negatively correlated, the proportional abundance of U. peregrina increasing upwards through the section. This reflects variations in proximity to the upper margin of the OMZ. This might reflect either crustal subsidence or long-term shallowing of the OMZ during the earlier late Quaternary. Neither hypothesis can be accepted unequivocally. The purported subsidence can be ascribed to crustal loading by the Amazon and Orinoco deep-sea fans, but this would require that the palaeodepth to the top of the OMZ remains constant across several glacial–interglacial cycles. In contrast, it is difficult to envisage any mechanism that could have caused progressive shallowing of the OMZ across several glacial–interglacial cycles. The epifaunal Planulina wuellerstorfi is related to more oxic waters and enhanced current action. This suggests that intervals with more abundant P. wuellerstorfi were somewhat less dysoxic than those with few. These intervals approximate to those with more abundant C. laevigata. Superimposed on this low-frequency signal is a higher-frequency signal, indicated by a between-sample assemblage turnover index (ATIs) that might prove useful for long-range sequence stratigraphic correlation at bathyal depths.


2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document