scholarly journals Application of different protocols and age-models in OSL dating of earthen mortars

2017 ◽  
Vol 44 (1) ◽  
pp. 341-351 ◽  
Author(s):  
Laura Panzeri ◽  
Michela Cantù ◽  
Marco Martini ◽  
Emanuela Sibilia

Abstract In this study, OSL dating was applied to earthen mortars, consisting in a quartz-rich aggregate dispersed in silty-clayey matrix. The samples were taken from two independently dated structures in Cremona, Northern Italy (Palazzo Raimondi, 1495–1499 AD and Palazzo Soldi, 1770–1790 AD). The evaluation of the equivalent dose (De) was attempted with both the multigrain and the single grain protocols using the 150–250 μm quartz fraction. The reliability and effectiveness of the various statistical methods in identifying the well-bleached samples were tested. The use of the multi-grain technique gave unreliable results, due to the high amount of poorly bleached grains. With the single-grain technique, more promising results were obtained: in particular, the un-log MAM3 and IEU models allowed an accurate evaluation of the mortar expected age in most cases, even if the precision is still relatively low.

2011 ◽  
Vol 38 (4) ◽  
pp. 424-431 ◽  
Author(s):  
Alastair Cunningham ◽  
Jakob Wallinga ◽  
Philip Minderhoud

AbstractIn the OSL dating of sediment, the scatter in equivalent dose (D e) between grains is almost always larger than would be expected due to counting statistics alone. Some scatter may be caused by insufficient (partial) bleaching of some of the grains prior to deposition. In order to date partially bleached sediment, it is essential to estimate the amount of scatter caused by other processes (e.g. grain-to-grain variability in the natural dose rate). Measurements of such scatter are performed at the single-grain level; by contrast, most OSL dating is performed on multi-grain subsamples, for which grain-to-grain scatter is reduced through averaging.Here we provide a model for estimating the expected scatter (i.e. excluding that caused by partial bleaching) for multi-grain aliquots. The model requires as input the single-grain sensitivity distribution, the number of grains in the sub-samples, and the expected scatter at the single-grain level, all of which can be estimated to an adequate degree. The model compares well with measured values of scatter in D e, determined using aliquots of various sizes, and can be used to help produce a minimum-age D e from multi-grain subsamples that is consistent with single-grain data.


Geochronology ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 229-245
Author(s):  
Guillaume Guérin ◽  
Christelle Lahaye ◽  
Maryam Heydari ◽  
Martin Autzen ◽  
Jan-Pieter Buylaert ◽  
...  

Abstract. Statistical analysis has become increasingly important in optically stimulated luminescence (OSL) dating since it has become possible to measure signals at the single-grain scale. The accuracy of large chronological datasets can benefit from the inclusion, in chronological modelling, of stratigraphic constraints and shared systematic errors. Recently, a number of Bayesian models have been developed for OSL age calculation; the R package “BayLum” presented herein allows different models of this type to be implemented, particularly for samples in stratigraphic order which share systematic errors. We first show how to introduce stratigraphic constraints in BayLum; then, we focus on the construction, based on measurement uncertainties, of dose covariance matrices to account for systematic errors specific to OSL dating. The nature (systematic versus random) of errors affecting OSL ages is discussed, based – as an example – on the dose rate determination procedure at the IRAMAT-CRP2A laboratory (Bordeaux). The effects of the stratigraphic constraints and dose covariance matrices are illustrated on example datasets. In particular, the benefit of combining the modelling of systematic errors with independent ages, unaffected by these errors, is demonstrated. Finally, we discuss other common ways of estimating dose rates and how they may be taken into account in the covariance matrix by other potential users and laboratories. Test datasets are provided as a Supplement to the reader, together with an R markdown tutorial allowing the reproduction of all calculations and figures presented in this study.


2021 ◽  
Author(s):  
Anna-Maartje de Boer ◽  
Wolfgang Schwanghart ◽  
Jürgen Mey ◽  
Jakob Wallinga ◽  
Basanta Raj Adhikari ◽  
...  

<p>Mass movements play an important role in landscape evolution of high mountain areas such as the Himalayas. Yet, establishing numerical age control and reconstructing transport dynamics of past events is challenging. To fill this research gap, we investigated the potential of Optically Stimulated Luminescence (OSL) dating and tracing methods. OSL dating analyses of Himalayan sediments is extremely challenging due to two main reasons: i) the OSL sensitivity of quartz, typically the mineral of choice for dating sediments younger than 100 ka, is poor, and ii) highly turbid conditions during mass movement transport hamper sufficient OSL signal resetting prior to deposition which eventually results in age overestimation. In this study, we aim to bring OSL dating to the test in an extremely challenging environment. First, we assess the applicability of single-grain feldspar dating of mass movement deposits in the Pokhara valley, Nepal. Second, we exploit the poor bleaching mechanisms to get insight into the sediment dynamics of this paleo-mass movement through bleaching proxies. The Pokhara valley is a unique setting for our case-study, considering the availability of an extensive independent radiocarbon dataset (Schwanghart et al., 2016) as a geochronological benchmark.</p><p>Single-grain infrared stimulated luminescence signals were measured at 50°C (IRSL50) and post-infrared infrared stimulated luminescence signals at 150°C (pIRIR-150). As expected, results show that the IRSL50 signal is better bleached than the pIRIR150 signal. A bootstrapped Minimum Age Model (bMAM) is applied to retrieve the youngest subpopulation to estimate the palaeodose. However, burial ages calculated based on this palaeodose overestimate the radiocarbon ages by an average factor of ~8 (IRSL50) and ~35 (pIRIR150). This shows that dating of the Pokhara Formation with our single-grain approach was not successful. Large inheritances in combination with the scatter in the single-grain dose distributions show that the sediments have been transported prior to deposition under extreme limited light exposure which corresponds well with the highly turbid nature of the sediment laden flood and debris flows that emplaced the Pokhara Formation.</p><p>To investigate the sediment transport dynamics in more detail we studied three bleaching proxies: the percentage of grains in saturation (2D0 criteria), percentage of well-bleached grains (2σ range of bMAM-De) and the overdispersion (OD). Neither of the three bleaching proxies indicate a spatial relationship with run-out distances of the mass movement deposits. We interpret this as virtual absence of bleaching during transport, which reflects the catastrophic nature of the event. While single-grain feldspar dating did not provide reliable burial ages of the Pokhara mass movement deposits, our approach has great potential to provide insight in sediment transport dynamics of high-impact low-frequency mass movement events in mountainous region.</p><p><em>References</em></p><p>Schwanghart, W., Bernhardt, A., Stolle, A., Hoelzmann, P., Adhikari, B. R., Andermann, C., ... & Korup, O. (2016). Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya. Science, 351(6269), 147-150.</p>


2016 ◽  
Vol 404 ◽  
pp. 199
Author(s):  
S. Armitage ◽  
C.S. Henshilwood ◽  
K.L. van Niekerk
Keyword(s):  

2020 ◽  
Vol 3 (1) ◽  
pp. 7 ◽  
Author(s):  
Junjie Zhang ◽  
Sheng-Hua Li

Compared to quartz, the infrared stimulated luminescence (IRSL) of K-feldspar saturates at higher dose, which has great potential for extending the dating limit. However, dating applications with K-feldspar has been hampered due to anomalous fading of the IRSL signal. The post-IR IRSL (pIRIR) signal of K-feldspar stimulated at a higher temperature after a prior low-temperature IR stimulation has significantly lower fading rate. Different dating protocols have been proposed with the pIRIR signals and successful dating applications have been made. In this study, we review the development of various pIRIR dating protocols, and compare their performance in estimating the equivalent dose (De). Standard growth curves (SGCs) of the pIRIR signals of K-feldspar are introduced. Single-grain K-feldspar pIRIR dating is presented and the existing problems are discussed.


2017 ◽  
Vol 107 ◽  
pp. 48-57 ◽  
Author(s):  
Pierre Guibert ◽  
Claire Christophe ◽  
Petra Urbanová ◽  
Guillaume Guérin ◽  
Sophie Blain
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document