scholarly journals On Some Properties of Solutions of Polyharmonic Equation in Polyhedral Angles

2007 ◽  
Vol 14 (3) ◽  
pp. 565-580
Author(s):  
Ilia Tavkhelidze

Abstract For a higher order differential equation with the polyharmonic operator, the Dirichlet and Riquier boundary value problems are studied in some polyhedral angles. Uniqueness theorems for solutions with a bounded “energy integral” of the corresponding BVPs are proved. Recurrent formulas are constructed for representation of fundamental solutions and Green's functions. The asymptotic behavior of solutions at infinity is studied.

2019 ◽  
Vol 24 (2) ◽  
pp. 58
Author(s):  
Hovik A. Matevossian

We study the properties of solutions of the mixed Dirichlet–Robin and Neumann–Robin problems for the linear system of elasticity theory in the exterior of a compact set and the asymptotic behavior of solutions of these problems at infinity under the assumption that the energy integral with weight | x | a is finite for such solutions. We use the variational principle and depending on the value of the parameter a, obtain uniqueness (non-uniqueness) theorems of the mixed problems or present exact formulas for the dimension of the space of solutions.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kusano Takaŝi ◽  
Jelena V. Manojlović

AbstractWe study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation(p(t)\lvert x^{\prime}\rvert^{\alpha}\operatorname{sgn}x^{\prime})^{\prime}+q(% t)\lvert x\rvert^{\alpha}\operatorname{sgn}x=0,where q is a continuous function which may take both positive and negative values in any neighborhood of infinity and p is a positive continuous function satisfying one of the conditions\int_{a}^{\infty}\frac{ds}{p(s)^{1/\alpha}}=\infty\quad\text{or}\quad\int_{a}^% {\infty}\frac{ds}{p(s)^{1/\alpha}}<\infty.The asymptotic formulas for generalized regularly varying solutions are established using the Karamata theory of regular variation.


Sign in / Sign up

Export Citation Format

Share Document