Maximal and Potential Operators in Variable Exponent Morrey Spaces

2008 ◽  
Vol 15 (2) ◽  
pp. 195-208 ◽  
Author(s):  
Alexandre Almeida ◽  
Javanshir Hasanov ◽  
Stefan Samko

Abstract We prove the boundedness of the Hardy–Littlewood maximal operator on variable Morrey spaces 𝐿𝑝(·), λ(·)(Ω) over a bounded open set Ω ⊂ ℝ𝑛 and a Sobolev type 𝐿𝑝(·), λ(·) → 𝐿𝑞(·), λ(·)-theorem for potential operators 𝐼 α(·), also of variable order. In the case of constant α, the limiting case is also studied when the potential operator 𝐼 α acts into BMO space.

2010 ◽  
Vol 107 (2) ◽  
pp. 285 ◽  
Author(s):  
Vagif S. Guliyev ◽  
Javanshir J. Hasanov ◽  
Stefan G. Samko

We consider generalized Morrey spaces ${\mathcal M}^{p(\cdot),\omega}(\Omega)$ with variable exponent $p(x)$ and a general function $\omega (x,r)$ defining the Morrey-type norm. In case of bounded sets $\Omega \subset {\mathsf R}^n$ we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev-Adams type ${\mathcal M}^{p(\cdot),\omega} (\Omega)\rightarrow {\mathcal M}^{q(\cdot),\omega} (\Omega)$-theorem for the potential operators $I^{\alpha(\cdot)}$, also of variable order. The conditions for the boundedness are given it terms of Zygmund-type integral inequalities on $\omega(x,r)$, which do not assume any assumption on monotonicity of $\omega(x,r)$ in $r$.


2020 ◽  
Vol 27 (1) ◽  
pp. 157-164
Author(s):  
Stefan Samko

AbstractWe show that the fractional operator {I^{\alpha(\,\cdot\,)}}, of variable order on a bounded open set in Ω, in a quasimetric measure space {(X,d,\mu)} in the case {\alpha(x)p(x)\equiv n} (where n comes from the growth condition on the measure μ), is bounded from the variable exponent Lebesgue space {L^{p(\,\cdot\,)}(\Omega)} into {\mathrm{BMO}(\Omega)} under certain assumptions on {p(x)} and {\alpha(x)}.


Author(s):  
Ferit Gürbüz ◽  
Shenghu Ding ◽  
Huili Han ◽  
Pinhong Long

AbstractIn this paper, applying the properties of variable exponent analysis and rough kernel, we study the mapping properties of rough singular integral operators. Then, we show the boundedness of rough Calderón–Zygmund type singular integral operator, rough Hardy–Littlewood maximal operator, as well as the corresponding commutators in variable exponent vanishing generalized Morrey spaces on bounded sets. In fact, the results above are generalizations of some known results on an operator basis.


2012 ◽  
Vol 20 (1) ◽  
pp. 189-212
Author(s):  
Vagif S. Guliyev ◽  
Yagub Y. Mammadov

Abstract In this paper we study the fractional maximal operator Mα, 0 ≤ α < Q and the Riesz potential operator ℑα, 0 < α < Q on the Heisenberg group in the modified Morrey spaces L͂p,λ(ℍn), where Q = 2n + 2 is the homogeneous dimension on ℍn. We prove that the operators Mα and ℑα are bounded from the modified Morrey space L͂1,λ(ℍn) to the weak modified Morrey space WL͂q,λ(ℍn) if and only if, α/Q ≤ 1 - 1/q ≤ α/(Q - λ) and from L͂p,λ(ℍn) to L͂q,λ(ℍn) if and only if, α/Q ≤ 1/p - 1/q ≤ α/(Q - λ).In the limiting case we prove that the operator Mα is bounded from L͂p,λ(ℍn) to L∞(ℍn) and the modified fractional integral operator Ĩα is bounded from L͂p,λ(ℍn) to BMO(ℍn).As applications of the properties of the fundamental solution of sub-Laplacian Ը on ℍn, we prove two Sobolev-Stein embedding theorems on modified Morrey and Besov-modified Morrey spaces in the Heisenberg group setting. As an another application, we prove the boundedness of ℑα from the Besov-modified Morrey spaces BL͂spθ,λ(ℍn) to BL͂spθ,λ(ℍn).


2020 ◽  
Vol 23 (1) ◽  
pp. 298-302 ◽  
Author(s):  
Humberto Rafeiro ◽  
Stefan Samko

AbstractIn the limiting case of Sobolev-Adams theorem for Morrey spaces of variable order we prove that the fractional operator of variable order maps the corresponding vanishing Morrey space into VMO.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Joaquín Motos ◽  
María Jesús Planells ◽  
César F. Talavera

We show that the dual Bp·locΩ′ of the variable exponent Hörmander space Bp(·)loc(Ω) is isomorphic to the Hörmander space B∞c(Ω) (when the exponent p(·) satisfies the conditions 0<p-≤p+≤1, the Hardy-Littlewood maximal operator M is bounded on Lp(·)/p0 for some 0<p0<p- and Ω is an open set in Rn) and that the Fréchet envelope of Bp(·)loc(Ω) is the space B1loc(Ω). Our proofs rely heavily on the properties of the Banach envelopes of the p0-Banach local spaces of Bp(·)loc(Ω) and on the inequalities established in the extrapolation theorems in variable Lebesgue spaces of entire analytic functions obtained in a previous article. Other results for p(·)≡p, 0<p<1, are also given (e.g., all quasi-Banach subspace of Bploc(Ω) is isomorphic to a subspace of lp, or l∞ is not isomorphic to a complemented subspace of the Shapiro space hp-). Finally, some questions are proposed.


Author(s):  
Stefan Samko

AbstractWe show that the Riesz fractional integration operator I α(·) of variable order on a bounded open set in Ω ⊂ ℝn in the limiting Sobolev case is bounded from L p(·)(Ω) into BMO(Ω), if p(x) satisfies the standard logcondition and α(x) is Hölder continuous of an arbitrarily small order.


Sign in / Sign up

Export Citation Format

Share Document