Industrial Thermowood® and Termovuoto thermal modification of two hardwoods from Mozambique

Holzforschung ◽  
2018 ◽  
Vol 72 (8) ◽  
pp. 701-709 ◽  
Author(s):  
Michael Pockrandt ◽  
Mohamed Jebrane ◽  
Ignazia Cuccui ◽  
Ottaviano Allegretti ◽  
Ernesto Uetimane ◽  
...  

AbstractThe study aimed at treating metil (Sterculia appendiculataK. Schum) and neem (Azadirachta indicaA. Juss) timber from Mozambique under industrial conditions by steam [Thermowood®(TW)] and vacuum [Termovuoto (TV)] thermal modifications (TM). Matched boards were treated identically and wood alterations in chemistry, colour, mass loss (ML), mechanical properties and durability were compared. The applied vacuum partly removed the acetic acid that causes carbohydrate degradation, i.e. heat applied under vacuum was less destructive. TM under vacuum generated a lighter colour than that caused by steam treatment. ML was significantly higher after the TW process namely, 14.1 vs. 9.9% after thermo-vacuum treatment for metil and 14.2 and 12.1% for neem. Colour and ML changes correlated with the decrease in shear strength, rupture and elasticity moduli and increase in wood decay resistance. Metil wood is more permeable and demonstrated significant differences between the treatments; the thermo-vacuum process was less destructive but led to less improvement of durability compared to TW treatment.

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1145 ◽  
Author(s):  
Jiajia Xu ◽  
Yu Zhang ◽  
Yunfang Shen ◽  
Cong Li ◽  
Yanwei Wang ◽  
...  

Thermal modification (TM) is an ecological and low-cost pretreated method to improve the dimensional stability and decay resistance of wood. This study systematically investigates the relevance between the evolution of chemical structure and the physical and mechanical properties during wood thermal modification processes. Moreover, the volatility of compounds (VOCs) was analyzed using a thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TGA-FTIR) and a pyrolizer coupled with gas chromatography/mass spectrometer (Py-GC/MS). With an increase of TM temperature, the anti-shrink efficiency and contact angle increased, while the equilibrium moisture content decreased. This result indicates that the dimensional stability improved markedly due to the reduction of hydrophilic hydroxyl (–OH). However, a slight decrease of the moduli of elasticity and of rupture was observed after TM due to the thermal degradation of hemicellulose and cellulose. Based on a TGA-FTIR analysis, the small molecular gaseous components were composed of H2O, CH4, CO2, and CO, where H2O was the dominant component with the highest absorbance intensity, i.e., 0.008 at 200 °C. Based on the Py-GC/MS analysis, the VOCs were shown to be mainly composed of acids, aldehydes, ketones, phenols, furans, alcohols, sugars, and esters, where acids were the dominant compounds, with a relative content of 37.05−42.77%.


Alloy Digest ◽  
1962 ◽  
Vol 11 (3) ◽  

Abstract ALUMINUM 220 is a 10% magnesium-aluminum casting alloy having the highest combination of mechanical properties, corrosion resistance and machinability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-112. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract ALUMINUM 2011 is an age-hardenable aluminum-copper alloy to which lead and bismuth are added to make it a free-machining alloy. It has good mechanical properties and was designed primarily for the manufacture of screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-32. Producer or source: Various aluminum companies. Originally published October 1955, revised December 1978.


Alloy Digest ◽  
1957 ◽  
Vol 6 (7) ◽  

Abstract ALCAN 350 is a 10% magnesium-aluminum casting alloy having high mechanical properties, excellent machinability, and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-52. Producer or source: Aluminum Company of Canada Ltd.


Alloy Digest ◽  
1971 ◽  
Vol 20 (11) ◽  

Abstract COPPER ALLOY No. 675 is a copper-zinc alloy having excellent mechanical properties and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-244. Producer or source: Brass mills.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


Alloy Digest ◽  
2008 ◽  
Vol 57 (3) ◽  

Abstract Ansonia alloy C14500 has unique fabrication properties while maintaining both physical and mechanical properties close to pure copper. The addition of Tellurium makes the alloy free machining. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on forming, heat treating, machining, and joining. Filing Code: CU-752. Producer or source: Ansonia Copper & Brass Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (4) ◽  

Abstract SUPERSTON 40 is an aluminum bronze containing 12% manganese and has good casting properties and excellent mechanical properties. It is recommended for any application where extreme corrosion resistance is required and where weldability is desired, such as propellers and marine equipment. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness, creep, and fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, and machining. Filing Code: Cu-150. Producer or source: H. Kramer & Company.


Alloy Digest ◽  
1999 ◽  
Vol 48 (12) ◽  

Abstract Kaiser Aluminum Alloy 7049 has high mechanical properties and good machinability. The alloy offers a resistance to stress-corrosion cracking and is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fatigue. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: AL-365. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Sign in / Sign up

Export Citation Format

Share Document