Properties of chemically and mechanically isolated fibres of spruce (Picea abies[L.] Karst.). Part 2: Twisting phenomena

Holzforschung ◽  
2005 ◽  
Vol 59 (2) ◽  
pp. 247-251 ◽  
Author(s):  
Ingo Burgert ◽  
Klaus Frühmann ◽  
Jozef Keckes ◽  
Peter Fratzl ◽  
Stefanie Stanzl-Tschegg

Abstract The twisting behaviour of chemically and mechanically isolated fibres of spruce (Picea abies[L.] Karst.) was examined. Mechanical isolation was carried out using very fine tweezers to obtain fibres with an unmodified cell wall assembly. Chemical isolation was achieved using hydrogen peroxide and glacial acetic acid, leading to partial degradation of lignin and hemicelluloses. Besides normal adult wood, compression wood and opposite wood fibres were investigated. Fibre twisting while drying increased with higher microfibril angles in the S2 layer, and was significantly less pronounced for mechanically isolated compared to chemically macerated fibres. A simple model is introduced that takes into account the interdependency between lateral cell-wall shrinkage and the microfibril angle in the S2 cell wall.

Holzforschung ◽  
2005 ◽  
Vol 59 (2) ◽  
pp. 240-246 ◽  
Author(s):  
Ingo Burgert ◽  
Notburga Gierlinger ◽  
Tanja Zimmermann

Abstract Single fibres of spruce (Picea abies [L.] Karst.) were isolated both chemically and mechanically from a solid wood sample. Mechanical isolation was carried out using very fine tweezers to peel out fibres, thereby taking advantage of the low shear strength between them. Chemical isolation was achieved using hydrogen peroxide and glacial acetic acid. Fibres were examined with Fourier-transform infrared (FT-IR) microscopy, and field-emission environmental scanning electron microscopy (FE-ESEM) in low-Vacuum mode to compare the isolation techniques with respect to their influence on cell wall structure and polymer assembly. The chemical treatment led to degradation of lignin and hemicelluloses, significantly influencing the cell wall assembly and structure. The cell wall polymers of mechanically isolated fibres remained in their natural constitution. As expected, the peeling process caused separation of cell wall layers. Our examinations indicate that delamination predominately took place at the interface between the secondary cell wall and the compound middle lamella. However, fracture between the S1 and S2 layers was examined as well. With respect to fibre quality, it was of particular importance that transverse crack propagation in the secondary cell walls (S2) was not observed.


2011 ◽  
Vol 3 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Asghar TARMIAN ◽  
Mohammad AZADFALLAH ◽  
Hadi GHOLAMIYAN ◽  
Mahdi SHAHVERDI

Inter-tracheid and cross-filed pit specifications in compression wood and opposite wood of Norway spruce (Picea abies) were determined. Fewer pits of a smaller size and a smaller aperture diameter were observed in compression wood. In contrast to the uniseriate arrangement of bordered pit pairs in compression wood, both uniseriate and biseriate pits were observed in opposite wood. In contrast to the circular view of the pit aperture in opposite wood, a slit-like pit aperture was often observed in compression wood. SEM images showed a number of helical fissures on the tracheid walls and bordered pits of compression wood along the microfibril angle in the S2 layer. The cross-field pits in compression wood were dominantly piceoid but sometimes cupressoid and occasionally taxodioid, whereas they were mostly piceoid and occasionally cupressoid in opposite wood. Overall, some significant differences in the inter-tracheid and cross-field pitting between the compression wood and opposite wood can give some explanations for their different air permeability and drying kinetics found in the previous studies.


Yeast ◽  
2021 ◽  
Author(s):  
Qingguo Guo ◽  
Na Meng ◽  
Guanzhi Fan ◽  
Dong Sun ◽  
Yuan Meng ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 225
Author(s):  
Agata Leszczuk ◽  
Justyna Cybulska ◽  
Tomasz Skrzypek ◽  
Artur Zdunek

Arabinogalactan proteins (AGPs) are constituents of the cell wall–plasma membrane continuum in fruit tissue. The aim of the study was to characterise AGPs contained in fruit by determination of their chemical structure and morphological properties. The results were obtained from in and ex situ investigations and a comparative analysis of AGPs present in Malus × domestica fruit at different stages of ripening from green fruit through the mature stage to over-ripening during fruit storage. The HPLC and colorimetric methods were used for analyses of the composition of monosaccharides and proteins in AGPs extracted from fruit. We have found that AGPs from fruit mainly consists of carbohydrate chains composed predominantly of arabinose, galactose, glucose, galacturonic acid, and xylose. The protein moiety accounts for 3.15–4.58%, which depends on the various phases of ripening. Taken together, our results show that the structural and morphological properties of AGPs and calcium concentration in AGPs are related to the progress of ripening, which is correlated with proper fruit cell wall assembly. In line with the existing knowledge, our data confirmed the typical carbohydrate composition of AGPs and may be the basis for studies regarding their presumed properties of binding calcium ions.


2007 ◽  
Vol 19 (1) ◽  
pp. 256-269 ◽  
Author(s):  
Katriina Keskiaho ◽  
Reija Hieta ◽  
Raija Sormunen ◽  
Johanna Myllyharju

2005 ◽  
Vol 66 (21) ◽  
pp. 2581-2594 ◽  
Author(s):  
Marcello Lenucci ◽  
Gabriella Piro ◽  
Janice G. Miller ◽  
Giuseppe Dalessandro ◽  
Stephen C. Fry

2008 ◽  
Vol 190 (22) ◽  
pp. 7579-7583 ◽  
Author(s):  
Antje Marie Hempel ◽  
Sheng-bing Wang ◽  
Michal Letek ◽  
José A. Gil ◽  
Klas Flärdh

ABSTRACT Time-lapse imaging of Streptomyces hyphae revealed foci of the essential protein DivIVA at sites where lateral branches will emerge. Overexpression experiments showed that DivIVA foci can trigger establishment of new zones of cell wall assembly, suggesting a key role of DivIVA in directing peptidoglycan synthesis and cell shape in Streptomyces.


1990 ◽  
Vol 21 (4) ◽  
pp. 233-242 ◽  
Author(s):  
Patricia Phelps ◽  
Tracey Stark ◽  
Claude P. Selitrennikoff

Sign in / Sign up

Export Citation Format

Share Document