arabinogalactan proteins
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 58)

H-INDEX

52
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Lukas Pfeifer ◽  
Jon Utermöhlen ◽  
Kathrin Happ ◽  
Charlotte Permann ◽  
Andreas Holzinger ◽  
...  

2021 ◽  
pp. 107360
Author(s):  
D. Renard ◽  
A. Davantès ◽  
A. D'orlando ◽  
K. Cahier ◽  
M. Molinari ◽  
...  

2021 ◽  
Author(s):  
Dasmeet Kaur ◽  
Michael A. Held ◽  
Mountain R. Smith ◽  
Allan M. Showalter

Abstract Background: Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. Results: To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5galt8galt9), two quadruple mutants (galt2galt5galt7galt8, galt2galt5galt7galt9), and one quintuple mutant (galt2galt5galt7galt8galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with β-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. The AGP profile of 25789 quintuple mutant stems indicated changes in AGP profiles compared to WT. Additionally, TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, GALT2, GALT5, GALT7, GALT8, and GALT9 display equal additive effects on insensitivity to β-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, GALT7, GALT8, and GALT9 contributed more to primary root growth and root tip swelling under salt stress, whereas GALT2 and GALT5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. Conclusion: Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.


Langmuir ◽  
2021 ◽  
Vol 37 (35) ◽  
pp. 10547-10559
Author(s):  
Athénaïs Davantès ◽  
Michaël Nigen ◽  
Christian Sanchez ◽  
Denis Renard

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1652
Author(s):  
Hanako Kiyono ◽  
Kazuma Katano ◽  
Nobuhiro Suzuki

To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.


mBio ◽  
2021 ◽  
Author(s):  
Jose Munoz-Munoz ◽  
Didier Ndeh ◽  
Pedro Fernandez-Julia ◽  
Gemma Walton ◽  
Bernard Henrissat ◽  
...  

Dietary manipulation of the HGM requires knowledge of how glycans available to this ecosystem are metabolized. The variable structures that decorate the core component of plant AGPs may influence their utilization by specific organisms within the HGM.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tereza Přerovská ◽  
Anna Pavlů ◽  
Dzianis Hancharyk ◽  
Anna Rodionova ◽  
Anna Vavříková ◽  
...  

Arabinogalactan proteins are very abundant, heavily glycosylated plant cell wall proteins. They are intensively studied because of their crucial role in plant development as well as their function in plant defence. Research of these biomacromolecules is complicated by the lack of tools for their analysis and characterisation due to their extreme heterogeneity. One of the few available tools for detection, isolation, characterisation, and functional studies of arabinogalactan proteins is Yariv reagents. Yariv reagent is a synthetic aromatic glycoconjugate originally prepared as an antigen for immunization. Later, it was found that this compound can precipitate arabinogalactan proteins, namely, their ß-D-(1→3)-galactan structures. Even though this compound has been intensively used for decades, the structural basis of arabinogalactan protein precipitation by Yariv is not known. Multiple biophysical studies have been published, but none of them attempted to elucidate the three-dimensional structure of the Yariv-galactan complex. Here we use a series of molecular dynamics simulations of systems containing one or multiple molecules of ß-D-galactosyl Yariv reagent with or without oligo ß-D-(1→3)-galactan to predict the structure of the complex. According to our model of Yariv-galactan complexes, Yariv reagent forms stacked oligomers stabilized by π-π and CH/π interactions. These oligomers may contain irregularities. Galactan structures crosslink these Yariv oligomers. The results were compared with studies in literature.


2021 ◽  
Vol 261 ◽  
pp. 117831
Author(s):  
Alexander Baumann ◽  
Lukas Pfeifer ◽  
Birgit Classen

2021 ◽  
Vol 22 (11) ◽  
pp. 5622
Author(s):  
Bartosz Jan Płachno ◽  
Małgorzata Kapusta ◽  
Piotr Świątek ◽  
Krzysztof Banaś ◽  
Vitor F. O. Miranda ◽  
...  

In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses the entire micropylar canal and extends beyond the limit of the integument. The female gametophyte then invades the placenta and a part of the central cell has direct contact with the ovary chamber. To date, information about the role of the placenta and integument in pollen tube guidance in Utricularia, which have extra-ovular female gametophytes, has been lacking. The aim of this study was to evaluate the role of the placenta, central cell and integument in pollen tube pollen tube guidance in Utricularia nelumbifolia Gardner and Utricularia humboldtii R.H. Schomb. by studying the production of arabinogalactan proteins. It was also determined whether the production of the arabinogalactan proteins is dependent on pollination in Utricularia. In both of the examined species, arabinogalactan proteins (AGPs) were observed in the placenta (epidermis and nutritive tissue), ovule (integument, chalaza), and female gametophyte of both pollinated and unpollinated flowers, which means that the production of AGPs is independent of pollination; however, the production of some AGPs was lower after fertilization. There were some differences in the production of AGPs between the examined species. The occurrence of AGPs in the placental epidermis and nutritive tissue suggests that they function as an obturator. The production of some AGPs in the ovular tissues (nucellus, integument) was independent of the presence of a mature embryo sac.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dagmar Hromadová ◽  
Aleš Soukup ◽  
Edita Tylová

Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.


Sign in / Sign up

Export Citation Format

Share Document