scholarly journals Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer

Author(s):  
Robert Clarke ◽  
Ayesha N. Shajahan ◽  
Yue Wang ◽  
John J. Tyson ◽  
Rebecca B. Riggins ◽  
...  

AbstractLack of understanding of endocrine resistance remains one of the major challenges for breast cancer researchers, clinicians, and patients. Current reductionist approaches to understanding the molecular signaling driving resistance have offered mostly incremental progress over the past 10 years. As the field of systems biology has begun to mature, the approaches and network modeling tools being developed and applied therein offer a different way to think about how molecular signaling and the regulation of crucial cellular functions are integrated. To gain novel insights, we first describe some of the key challenges facing network modeling of endocrine resistance, many of which arise from the properties of the data spaces being studied. We then use activation of the unfolded protein response (UPR) following induction of endoplasmic reticulum stress in breast cancer cells by antiestrogens, to illustrate our approaches to computational modeling. Activation of UPR is a key determinant of cell fate decision-making and regulation of autophagy and apoptosis. These initial studies provide insight into a small subnetwork topology obtained using differential dependency network analysis and focused on the UPR gene XBP1. The XBP1 subnetwork topology incorporates BCAR3, BCL2, BIK, NF-κB, and other genes as nodes; the connecting edges represent the dependency structures among these nodes. As data from ongoing cellular and molecular studies become available, we will build detailed mathematical models of this XBP1-UPR network.

2019 ◽  
Vol 20 (4) ◽  
pp. 857 ◽  
Author(s):  
Lorenza Sisinni ◽  
Michele Pietrafesa ◽  
Silvia Lepore ◽  
Francesca Maddalena ◽  
Valentina Condelli ◽  
...  

The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstream UPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanism of tumor progression. In this review, we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aim to disclose novel therapeutic scenarios. The hypothesis that autophagy and UPR may provide novel molecular targets in human malignancies is discussed.


2005 ◽  
Vol 79 (11) ◽  
pp. 6890-6899 ◽  
Author(s):  
Jennifer A. Isler ◽  
Alison H. Skalet ◽  
James C. Alwine

ABSTRACT Viral infection causes stress to the endoplasmic reticulum. The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover by attenuating translation and upregulating the expression of chaperones, degradation factors, and factors that regulate the cell's metabolic and redox environment. Some consequences of the UPR (e.g., expression of chaperones and regulation of the metabolism and redox environment) may be advantageous to the viral infection; however, translational attenuation would not. Thus, viruses may induce mechanisms which modulate the UPR, maintaining beneficial aspects and suppressing deleterious aspects. We demonstrate that human cytomegalovirus (HCMV) infection induces the UPR but specifically regulates the three branches of UPR signaling, PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE-1), to favor viral replication. HCMV infection activated the eIF2α kinase PERK; however, the amount of phosphorylated eIF2α was limited and translation attenuation did not occur. Interestingly, translation of select mRNAs, which is dependent on eIF2α phosphorylation, did occur, including the transcription factor ATF4, which activates genes which may benefit the infection. The endoplasmic reticulum stress-induced activation of the transcription factor ATF6 was suppressed in HCMV-infected cells; however, specific chaperone genes, normally activated by ATF6, were activated by a virus-induced, ATF6-independent mechanism. Lastly, HCMV infection activated the IRE-1 pathway, as indicated by splicing of Xbp-1 mRNA. However, transcriptional activation of the XBP-1 target gene EDEM (ER degradation-enhancing α-mannosidase-like protein, a protein degradation factor) was inhibited. These results suggest that, although HCMV infection induces the unfolded protein response, it modifies the outcome to benefit viral replication.


Sign in / Sign up

Export Citation Format

Share Document