scholarly journals A Synthesis Model for Forcing Action Arrangement in the System of Reducing Dynamic Loads of a Mobile Machine

2015 ◽  
Vol 20 (2) ◽  
pp. 437-443 ◽  
Author(s):  
H. Kaźmierczak ◽  
T. Pawłowski ◽  
K. Zembrowski

Abstract An idea is presented for a method to lower excessive dynamic loads in the system of supporting structure, mechanical-hydraulic forcing system, vibration isolation system, protective unit. The dynamic characteristics of the system are determined by the method of dynamic susceptibility. An analytical model of the system was built (mobile machine to carry out protective treatments; project WDN-POIG.01.03.01-00-164/09).

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Pan Zhou ◽  
Wen L. Li ◽  
Wanyou Li ◽  
Zhijun Shuai

Vibration isolation systems are widely employed in automotive, marine, aerospace, and other engineering fields. Accurate input forces are of great significance for mechanical design, vibration prediction, and structure modification and optimization. One-stage vibration isolation system including engine, vibration isolators, and flexible supporting structure is modeled theoretically in this paper. Input excitation acting on the vibration isolation system is reconstructed using dynamic responses measured on engine and supporting structure under in-suit condition. The reconstructed forces reveal that dynamic responses on rigid body are likely to provide more accurate estimation results. Moreover, in order to improve the accuracy of excitation reconstructed by dynamic responses on flexible supporting structure, auto/cross-power spectral density function is utilized to reduce measurement noise.


2011 ◽  
Vol 328-330 ◽  
pp. 1679-1683
Author(s):  
Jie Li ◽  
Rui Ping Tao ◽  
Jun Liu ◽  
Wei Chen

For the vibration noise problem of strap-down inertial navigation system in the vehicle, a better vibration damping system was designed. Based on the vibration characters of the vehicle environment, a vibration damping model fitted the SINS in the vehicle was presented; and then the mechanism of vibration damping system was designed especially; and then the design of vibration damping system was verified by using of the dynamic characteristic analysis, On the basis of the above analysis, the overall structure of actual vibration isolation system was built, and then the test for the vibration isolation system was made, the results show that the micro-isolation system for the SINS system vibration and noise has a better inhibition effect, and the applicability and the dependability of the vibration damping system is verified by the test results, which provides reference basis for the design of the strap-down inertial navigation damping system in the land vehicle and provides techniques for the better application of SINS in other fields.


2012 ◽  
Vol 226-228 ◽  
pp. 195-198
Author(s):  
Rong Wei Wen ◽  
Jiu Bin Tan ◽  
Lei Wang ◽  
Guan Hua Wang

A mathematical model of a single degree of freedom air spring vibration isolation system is established. The model analyzes the influence of structural damping in the air spring vibration isolation system based on the traditional model. This paper establishes the relationship between the working pressure p, the volume ratio of n and system vibration transmissibility T under forced vibration. The experimental results are verified on different working pressure. The results showed that working pressure p has little effect on the resonant frequency of the system and the system vibration transmissibility. The smaller the ratio n, the lower the resonant frequency of the system and the system vibration transmissibility. The environmental excitation frequency range must be taken into account in designing.


2020 ◽  
Vol 25 (1) ◽  
pp. 96-103
Author(s):  
Sudhir Kaul

This paper examines a model to investigate the impact of a vibration isolation system on the planar (in-plane) dynamics of a motorcycle. While it is not very common, a vibration isolation system is used in some motorcycles to mitigate vibrations resulting from the shaking forces of the engine. For such layouts, the powertrain is assembled to the frame through the vibration isolation system that typically consists of two to four isolators. It is critical to comprehend the influence of the isolation system on the overall dynamic characteristics of the motorcycle due to the coupled dynamics of the rear suspension, the isolation system, and the rear unsprung mass. The influence of a vibration isolation system on the in-plane dynamics is analysed by using a relatively simple model that has been developed in this study. This model has been used to evaluate the influence of the isolation system on natural modes, transmissibility, and ride comfort. Results indicate that the use of a vibration isolation system couples the rear unsprung hop to the pitch motion of the powertrain with a slight increase in the corresponding natural frequency. Results indicate that the use of a vibration isolation system directly affects handling of the motorcycle. Furthermore, results indicate that the pitch of the sprung mass and the hop of the rear unsprung mass are particularly influenced by the vibration isolation system. The model presented in this paper could be useful in the early stages of the design process to compare the rigidly mounted powertrain to different layouts of the vibration isolation system.


2019 ◽  
Vol 38 (2) ◽  
pp. 684-691
Author(s):  
M Jurevicius ◽  
V Vekteris ◽  
G Viselga ◽  
V Turla ◽  
A Kilikevicius ◽  
...  

The paper describes an establishment of dynamic characteristics of the newly created passive mechanical system for isolation of low-frequency (0.7 Hz–50 Hz) vibrations. The many metrological means are sensitive to mechanical vibrations and acoustic noise of low frequency. Such may appear both outside and inside a building, i.e. may be caused by wind, heating, aeration, air conditioning equipment, moving vehicles and other. In the paper, description of the theoretical and experimental tests is provided. The obtained dynamic characteristics (transmissibilities) of the passive mechanical low-frequency vibration isolation system show that such a system is able to isolate vibrations effectively in the frequency range of 0.7 Hz–50 Hz. The results of the experimental tests support the results of the theoretical research.


Sign in / Sign up

Export Citation Format

Share Document