Friedel-Crafts alkylation of benzene with benzyl alcohol over H-MCM-22

Author(s):  
Deniz Karabulut ◽  
Sema Akyalcin

Abstract MCM-22 was synthesized by using silicic acid powder as a silica source under the static hydrothermal condition and characterized by X-ray diffraction, nitrogen adsorption-desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The liquid phase benzylation of benzene with benzyl alcohol to diphenylmethane was investigated over H-MCM-22. The effects of reaction parameters on the conversion of benzyl alcohol and product distribution were determined. Under optimal reaction conditions, diphenylmethane yield of 92.1% was achieved for 99.3% conversion of benzyl alcohol in 3 h of reaction period. The reusability of the catalyst was also investigated after calcination of the catalyst in stagnant air at 500 °C for 4 h. The results show that the organic species produced during the reaction deposited in the catalyst lead to the deactivation of the catalyst and the calcination of the deactivated catalyst causes catalyst dealumination.

2012 ◽  
Vol 512-515 ◽  
pp. 2412-2418
Author(s):  
Xiao Dan Zhang ◽  
Zhui Hui Hu ◽  
Dong Hui Zhang

Silver ion modified mesoporous silica (Ag-AMS-2) was prepared by using N-lauroyl-L-glutamic acid as structure directing agents and applied to dimethly sulfide (DMS) removal at ambient temperatures. The silver ion interacted with the amino group through coordination bonds and then the silver ion were as the adsorptive sites of the DMS. These Ag-AMS-2 materials were characterized by X-ray diffraction (XRD), nitrogen adsorption desorption, high-resolution transmission electron microscopy (HRTEM), thermal analysis and inductively coupled plasma optical emission spectrometry (ICP-OES). The performance of these Ag-AMS-2 materials as DMS adsorbents was tested using a dynamic breakthrough test. And these samples showed high removal efficiency and high saturation adsorption capacity of DMS.


2020 ◽  
Vol 22 (2) ◽  
pp. 81
Author(s):  
Z.R. Ismagilov ◽  
E.V. Matus ◽  
O.S. Efimova ◽  
L.M. Khitsova ◽  
A.N. Popova ◽  
...  

Metal-carbon materials M/CNTs (M = Ce, Сu, Mo) were synthesized by incipient wetness impregnation and their physicochemical characteristics were studied using various methods (inductively coupled plasma optical emission spectrometry, thermal analysis coupled with mass spectrometry, low-temperature nitrogen adsorption, X-ray diffraction and structural analysis, scanning electron microscopy, and Raman spectroscopy). It was found that M/CNTs (M = Ce, Сu, Mo) are the mesoporous materials consisting of carbon nanotubes with deposited СeO2, Сu2O/Cu or МоО3/MoO2 particles, respectively. The dispersion of supported species and their deposition uniformity improve in the series Сu < Се < Мо. The type of metal was shown to affect thermal stability as well as the textural and structural properties of the samples. The thermal stability of materials increases in the series Ce < Cu ≈ Mo, which is caused by different redox properties of the metals and also by the composition of products of the metal precursor decomposition. It is promising to use the developed materials as the catalysts for deep purification of diesel fraction components from sulfur compounds.


2020 ◽  
Vol 16 ◽  
Author(s):  
Diogo L. R. Novo ◽  
Priscila T. Scaglioni ◽  
Rodrigo M. Pereira ◽  
Filipe S. Rondan ◽  
Gilberto S. Coelho Junior ◽  
...  

Background: Conventional analytical methods for phosphorus and sulfur determination in several matrices present normally analytical challenges regarding inaccuracy, detectability and waste generation. Objective: The main objective is proposing a green and feasible analytical method for phosphorus and sulfur determination in animal feed. Methods: Synergic effect between microwave and ultraviolet radiations during sample preparation was evaluated for the first time for the animal feed digestion associated with further phosphorus and sulfur determination by ion chromatography with conductivity detection. Dissolved carbon and residual acidity in final digests were used for the proposed method assessment. Phosphorus and sulfur values were compared with those obtained using conventional microwave-assisted wet digestion in closed vessels associated with inductively coupled plasma optical emission spectrometry and with those obtained using Association of Official Analytical Chemists International official method. Recovery tests and certified reference material analysis were performed. Animal feeds were analyzed using the proposed method. Results: Sample masses of 500 mg were efficiently digested using only 2 mol L -1 HNO3. The results obtained by the proposed method was not differing significantly (p > 0.05) from those obtained by the conventional and official methods. Suitable recoveries (from 94 to 99%), agreement with certified values (101 and 104%) and relative standard deviations (< 8%) were achieved. Phosphorus and sulfur content in commercial products varied in a wide range (P: 5,873 to 28,387 mg kg-1 and S: 2,165 to 4,501 mg kg-1 ). Conclusion: The proposed method is a green, safe, accurate, precise and sensitive alternative for animal feed quality control.


Sign in / Sign up

Export Citation Format

Share Document