An integrated PMU architecture for power system applications

Author(s):  
Mir Khadim Aalam ◽  
K.N. Shubhanga

Abstract Time synchronized phasors obtained using Phasor Measurement Units (PMU) spread across wide areas have revolutionized power system monitoring and control. These synchronized measurements must be accurate and fast in order to comply with the latest IEEE standards for synchrophasor measurements. The speed at which a PMU provides an output depends on the group delay associated with that PMU and the permissible group delay in-turn decides the utility of a PMU for either control or measurement application. Based on the group delay compensation techniques, in the literature, two individual types of PMUs, such as causal and non-causal PMUs have been introduced. This paper presents an approach where both causal and non-causal PMUs are combined in an integrated PMU architecture. This method not only illustrates the group delay performance of two PMUs in a single module, but also can be used for multiple functions. In this environment several PMU algorithms have been compared with respect to their group delays and their effect on the response time. Application of the integrated PMU architecture to a four-machine 10-bus power system has been demonstrated using a six-input PMU with three-phase voltage and current signals as inputs. Different causal compensation schemes are introduced due to the availability of voltage and current-based frequency and ROCOF signals. Impact of these compensation schemes on PMU accuracy is evaluated through the Total Vector Error (TVE) index. The influence of these compensation schemes on measurements like power and impedance is also investigated. Finally, outputs from the integrated PMU architecture are fed into a Power System Stabilizer (PSS) to control the small-signal stability performance of a power system during dynamic conditions.

2013 ◽  
Vol 479-480 ◽  
pp. 530-534
Author(s):  
Van Dien Doan ◽  
Ta Hsiu Tseng ◽  
Pei Hwa Huang

The main objective of this paper is to report the small signal stability analysis of Vietnam Power System which has a longitudinal network structure with the consideration of power system stabilizer (PSS) in operation to enhance the damping of inter-area oscillation by using local as well as remote feedback signals via phasor measurement unit (PMU). Both methods of frequency domain and time domain analyses are used to investigate the performance of the power system. The study results show that by proper selection of PSS installation locations and remote feedback signals, power oscillations on the tie-line will be reduced and the system stability is thus improved.


2013 ◽  
Vol 768 ◽  
pp. 313-316
Author(s):  
P. Sivakumar ◽  
C. Birindha

Distribution system is facing stability issues with integration of distributed generators and controllers. This proposed method presents the stability of renewable energy based distribution system with varying energy source considering intermittent nature of wind and solar energy using probabilistic approach. The system is supplied by conventional and distributed generating sources like PV and wind. Monte Carlo approach is used for predicting the wind and solar power uncertainties. Proposed work explains both small signal stability and transient stability enhancement of DG sourced power system with power system stabilizer and automatic voltage regulator .It is carried out in is 4 machine 10 bus system. The initial simulation has been carried out using MATLAB/SIMULINK.


As electrical power system is a complex system, there are more chances of stability issues may arise. One of the stability issues is Low Frequency Oscillations (LFOs) which makes the system unstable. As these oscillations are having low frequency i.e. large time constant with slowly increasing magnitude, they are referred to small signal stability. The main reason of these oscillations is due to lack of sufficient damping torque. Automatic Voltage Regulator (AVR) action in generator is providing sufficient synchronizing torque for system stability. This is possible with high gain and low time constant AVR which results in reduction of damping torque. Power System Stabilizer (PSS) is used together with AVR for providing necessary damping torque to minimize the LFOs. For effective damping, the PSS performance is improved by optimizing its parameters. In this paper, Single Machine Infinite Bus (SMIB) system is considered for studying the effect of LFOs. The SMIB system is simulated for a step disturbance in reference voltage and the results are carried out for different optimizing techniques Particle Swarm Optimization (PSO), Cat Swarm Optimization (CSO), Teaching and Learning based Optimization (TLBO)


Sign in / Sign up

Export Citation Format

Share Document