A novel Confidential Consortium Blockchain framework for peer to peer energy trading

Author(s):  
Nihar Ranjan Pradhan ◽  
Akhilendra Pratap Singh ◽  
Kaibalya Prasad Panda ◽  
Diptendu Sinha Roy

Abstract The vital dependence of peer to peer (P2P) energy trading frameworks on creative Internet of Things (IoT) has been making it more vulnerable against a wide scope of attacks and performance bottlenecks like low throughput, high latency, high CPU, memory use, etc. This hence compromises the energy exchanging information to store, share, oversee, and access. Blockchain innovation as a feasible solution, works with the rule of untrusted members. To alleviate this threat and performance issues, this paper presents a Blockchain based Confidential Consortium (CoCo) P2P energy trading system that works on the trust issues among the energy exchanging networks and limits performance parameters. It reduces the duplicate validation by creating a trusted network on nodes, where participants identities are known and controlled. A Java-script-based smart contract is sent over the Microsoft CoCo system with Proof of Elapsed Time (PoET) consensus protocol. Also, a functional model is designed for the proposed framework and the performance bench-marking has been done considering about latency, throughput, transaction rate control, success and fail transaction, CPU and memory usage, network traffic. Additionally, it is shown that PoET’s performance is superior to proof of work (PoW) for multi-hosting conditions. The measured throughput and latency moving toward database speeds with more flexible, business-specific confidentiality models, network policy management through distributed governance, support for non-deterministic transactions, and reduced energy consumption.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1985
Author(s):  
Jae Geun Song ◽  
Eung seon Kang ◽  
Hyeon Woo Shin ◽  
Ju Wook Jang

We implement a peer-to-peer (P2P) energy trading system between prosumers and consumers using a smart contract on Ethereum blockchain. The smart contract resides on a blockchain shared by participants and hence guarantees exact execution of trade and keeps immutable transaction records. It removes high cost and overheads needed against hacking or tampering in traditional server-based P2P energy trade systems. The salient features of our implementation include: 1. Dynamic pricing for automatic balancing of total supply and total demand within a microgrid, 2. prevention of double sale, 3. automatic and autonomous operation, 4. experiment on a testbed (Node.js and web3.js API to access Ethereum Virtual Machine on Raspberry Pis with MATLAB interface), and 5. simulation via personas (virtual consumers and prosumers generated from benchmark). Detailed description of our implementation is provided along with state diagrams and core procedures.


Author(s):  
Mohammad Jabed M. Chowdhury ◽  
Muhammad Usman ◽  
Md Sadek Ferdous ◽  
Niaz Chowdhury ◽  
Anam Ibna Harun ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7484
Author(s):  
Yuki Matsuda ◽  
Yuto Yamazaki ◽  
Hiromu Oki ◽  
Yasuhiro Takeda ◽  
Daishi Sagawa ◽  
...  

To further implement decentralized renewable energy resources, blockchain based peer-to-peer (P2P) energy trading is gaining attention and its architecture has been proposed with virtual demonstrations. In this paper, to further socially implement this concept, a blockchain based peer to peer energy trading system which could coordinate with energy control hardware was constructed, and a demonstration experiment was conducted. Previous work focused on virtually matching energy supply and demand via blockchain P2P energy markets, and our work pushes this forward by demonstrating the possibility of actual energy flow control. In this demonstration, Plug-in Hybrid Electrical Vehicles(PHEVs) and Home Energy Management Systems(HEMS) actually used in daily life were controlled in coordination with the blockchain system. In construction, the need of a multi-tagged continuous market was found and proposed. In the demonstration experiment, the proposed blockchain market and hardware control interface was proven capable of securing and stably transmitting energy within the P2P energy system. Also, by the implementation of multi-tagged energy markets, the number of transactions required to secure the required amount of electricity was reduced.


Author(s):  
Moayad Aloqaily ◽  
Ouns Bouachir ◽  
Öznur Özkasap ◽  
Faizan Safdar Ali

AbstractGrowing intelligent cities is witnessing an increasing amount of local energy generation through renewable energy resources. Energy trade among the local energy generators (aka prosumers) and consumers can reduce the energy consumption cost and also reduce the dependency on conventional energy resources, not to mention the environmental, economic, and societal benefits. However, these local energy sources might not be enough to fulfill energy consumption demands. A hybrid approach, where consumers can buy energy from both prosumers (that generate energy) and also from prosumer of other locations, is essential. A centralized system can be used to manage this energy trading that faces several security issues and increase centralized development cost. In this paper, a hybrid energy trading system coupled with a smart contract named SynergyGrids has been proposed as a solution, that reduces the average cost of energy and load over the utility grids. To the best of our knowledge, this work is the first attempt to create a hybrid energy trading platform over the smart contract for energy demand prediction. An hourly energy data set has been utilized for testing and validation purposes. The trading system shows 17.8% decrease in energy cost for consumers and 76.4% decrease in load over utility grids when compared with its counterparts.


Author(s):  
Ashmita Pandey

Abstract: A decentralised, Secure, Peer-to-Peer Multi-Voting System on Ethereum Blockchain is a distributed ledger technology (DLT) that permits virtual votes to be transacted in a peer-to-peer decentralized network. Those transactions are validated and registered through every node of the network, so creating a transparent and immutable series of registered events whose truthfulness is supplied through a consensus protocol. Smart contract automates the execution of agreement that runs routinely as soon as the conditions are satisfied. Smart contract would not need any third parties consequently prevents time loss. By Eliminating the requirement for third parties, consequently, allows numerous processes to be extra efficient and economical. The system is secure, reliable, and anonymous. Smart contract is enforced for the Ethereum network using the Ethereum wallets and also the Solidity language. Users are capable of submit their votes immediately from their Ethereum wallets, and those transaction requests is handled with the consensus of each single Ethereum node. This creates a transparent environment for evoting. A lot of concerning efficiency of the peer-to-peer decentralized electoral system on Ethereum network along with application and the outcomes of implementation are provided in this paper. Keywords: Blockchain, Distributed Ledger Technology (DLT), Consensus Protocol, Smart Contracts, Ethereum, Solidity


2021 ◽  
pp. 1-1
Author(s):  
Juhar Abdella ◽  
Zahir Tari ◽  
Adnan Anwar ◽  
Abdun Mahmood ◽  
Fengling Han

2020 ◽  
Vol 67 (6) ◽  
pp. 4646-4657 ◽  
Author(s):  
Mohsen Khorasany ◽  
Yateendra Mishra ◽  
Gerard Ledwich

Sign in / Sign up

Export Citation Format

Share Document