Effects of Carrageenan and Chitosan as Coating Materials on the Thermal Degradation of Microencapsulated Phycocyanin from Spirulina sp.

2019 ◽  
Vol 15 (5-6) ◽  
Author(s):  
H. Hadiyanto ◽  
Marcelinus Christwardana ◽  
Meiny Suzery ◽  
Heri Sutanto ◽  
Ayu Munti Nilamsari ◽  
...  

AbstractPhycocyanin is a natural substance that can be used as an antioxidant and food colorant. The quality of phycocyanin deteriorates when it is exposed to heat, and such deterioration is evidenced by decreases in its antioxidant activity and color. Encapsulation, which introduces a coating material over a substance of interest, has been applied to prevent changes in substance quality. The objective of the present research is to evaluate the kinetics of thermal degradation of phycocyanin coated with carrageenan or chitosan. Encapsulated phycocyanin samples were exposed to temperatures of 40, 50, or 60 °C for 90 min, and kinetics of the resulting degradation was evaluated to determine changes in sample quality. The results showed that the thermal degradation of encapsulated phycocyanin at 40–60 °C follows first-order reaction kinetics with reaction rate constants (k) of 4.67–9.17 × 10–5 s-1 and 3.83–7.67 × 10–5 s-1 for carrageenan and chitosan, respectively, and that the k of encapsulated phycocyanin is slower than that obtained from samples without the coating materials (control). Encapsulation efficiencies (EE) of 68.66 % and 76.45 %, as well as loading capacities of 45.28 % and 49.16 %, were, respectively, obtained for carrageenan and chitosan.

2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.


Author(s):  
Souad Timoumi ◽  
Daoued Mihoubi ◽  
Fethi Zagrouba

AbstractIn this work a two-dimensional convective drying model of heat, mass and momentum transfer is developed taking account of the shrinkage and the quality degradation of carrots. The kinetics of β-carotene degradation in dried agricultural product is considered to follow a first-order reaction. Temperature dependence of the reaction rate constants followed the Arrhenius relationship. The developed model, describes the strong coupling between mass, heat and momentum transfers, shrinkage and quality (β-carotene) changes and takes into account the dehydration of the solid caused by a temperature increase.


1984 ◽  
Vol 56 (2) ◽  
pp. 268-270 ◽  
Author(s):  
Joseph T. Vanderslice ◽  
Gary R. Beecher ◽  
A. Gregory. Rosenfeld

Author(s):  
M.A. Egyan ◽  

The article shows studies characterizing the quality of the squeeze: the mechanical composition of the squeeze is determined, the structural moisture of each component is determined, the sugar content in the formed process of sedimentation of the juice and its acidity are determined refractometrically. The kinetics of anthocyanins extraction was determined in two ways, the solids content in the extract was calculated, and the reaction rate constants of the extraction process and the efficiency coefficient of ultrasonic amplification of the extraction process speed were calculated.


Author(s):  
S.M. Asadov ◽  

This article is devoted to modeling the kinetics of colloidal crystallization of cadmium selenide (CdSe) nanoparticles (NPs). The kinetic equation is modified, considering the contributions of the reaction rate constants of individual stages. It includes the reaction rate constants, thermodynamic and calculated parameters, and physical properties. There is used modified kinetic model based on the crystallization equation. There are considered the contributions of adsorption, desorption, and migration of nucleated particles at different times. Modified model assumes that, upon crystallization of NPs CdSe, monomer units depend on the frequency of attachment and detachment transitions of the monomer–CdSe complex. In this case, the transformation of the precursor into a monomer, the formation of an effective monomer and nucleation pass into the growth stage of (NC CdSe) nanocrystals with a seeded mass. In the process, the resulting nanocluster will continue to grow due to early maturation, aging, and subsequent growth into larger NC CdSe. The Kinetic Monte Carlo method (KMC) is used to approximate the model of the nucleation–growth of NC considering different contributions to the reaction rate constants. The modified model with the use of KMC allows to describe the dependences of the kinetic rate constants on the average radius of nanoparticles as a function of time, concentration, and distribution of NC CdSe at a given time. There are described conditions for the formation of NPs CdSe with an evolutionary distribution function of NC CdSe in size space. The results of modeling the kinetics of colloidal crystallization of CdSe can be used to control nucleation rate and growth of NPs CdSe, as well as similar systems in the formation of high-quality NC.


2000 ◽  
Vol 65 (12) ◽  
pp. 857-866
Author(s):  
Mladjen Micevic ◽  
Slobodan Petrovic

The alcoholysis of 1,2,2-trimethylpropyl-methylfluorophosphonate (soman) was examined with a series of alkoxides and in corresponding alcohols: methanol, ethanol, 1-propanol, 2-propanol, 2-methoxyethanol and 2-ethoxyethanol. Soman reacts with the used alkoxides in a second order reaction, first order in each reactant. The kinetics of the reaction between 1,2,2-trimethylpropyl-methylfluorophosphonate and ethanol in the presence of diethylenetriamine was also examined. A third order reaction rate constant was calculated, first order in each reactant. The activation energy, frequency factor and activation entropy were determined on the basis of the kinetic data.


1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.


Sign in / Sign up

Export Citation Format

Share Document