Effects of Zr and Sc additions on precipitation of α-Al(FeMn)Si dispersoids under various heat treatments in Al–Mg–Si AA6082 alloys

Author(s):  
Kun Liu ◽  
Emad Elgallad ◽  
Chen Li ◽  
X.-Grant. Chen

Abstract The present work investigated the influence of Zr and Sc on the evolution of α-Al(FeMn)Si dispersoids (“α-dispersoids") in Al–Mg–Si alloys. Both the individual addition of Zr and the combined additions of Sc and Zr increased the size but decreased the number density of the α-dispersoids, indicating the reduction in the formation of α-dispersoids. However, the reduction levels were the most significant when heat-treated at 350 °C in the alloy with both Sc and Zr and at 400 °C in the alloy with only Zr, which were likely related to the different interactions between intermediate B’ precipitates and α-dispersoids with the addition of Zr and Sc. Although the α-dispersoids were suppressed in the Zr/Sc-containing alloys, their microhardness was generally higher than the base alloy, which can be attributed to the strengthening contribution induced by Zr and Sc either from their solid solution hardening or the precipitation hardening of Al3Zr/Al3(Sc, Zr) dispersoids.

2017 ◽  
Vol 58 (10) ◽  
pp. 1404-1410 ◽  
Author(s):  
Kei Shimagami ◽  
Sae Matsunaga ◽  
Atsushi Yumoto ◽  
Tsutomu Ito ◽  
Yoko Yamabe-Mitarai

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Fujio Abe

Recent progress in creep-resistant bainitic, martensitic, and austenitic steels for high efficiency coal-fired power plants is comprehensively reviewed with emphasis on long-term creep strength and microstructure stability at grain boundaries (GBs). The creep strength enhanced ferritic (CSEF) steels, such as Grade 91 (9Cr–1Mo–0.2V–0.05Nb), Grade 92 (9Cr–0.5Mo–1.8W–VNb), and Grade 122 (11Cr–0.4Mo–2W–1CuVNb), can offer the highest potential to meet the required flexibility for ultra-supercritical (USC) power plants operating at around 600 °C, because of their smaller thermal expansion and larger thermal conductivity than austenitic steels and Ni base alloys. Further improvement of creep strength of martensitic 9 to 12Cr steels has been achieved by substituting a part or all of Mo with W and also by the addition of Co, V, Nb, and boron. A martensitic 9Cr–3W–3Co–VNb steel strengthened by boron and MX nitrides, designated MARBN, exhibits not only much higher creep strength of base metal than Grade 91, Grade 92, and Grade 122 but also substantially no degradation in creep strength due to type IV fracture in welded joints at 650 °C. High-strength bainitic 2.25 to 3Cr steels have been developed by enhancing solid solution hardening due to W and precipitation hardening due to (V,Nb)C carbides in bainitic microstructure. The improvement of creep strength of austenitic steels has been achieved by solid solution hardening due to the addition of Mo, W, and nitrogen and by precipitation hardening due to the formation of fine MX (M = Ti, Nb, X = C, N), NbCrN, M23C6, Cu phase, and Fe2(Mo,W) Laves phase. The boundary and sub-boundary hardening are shown to be the most important strengthening mechanism in creep of creep-resistant steels and is enhanced by fine dispersions of precipitates along boundaries.


Author(s):  
Jing Zhang ◽  
Rolf Sandström

Ni and Ni-W binary alloys are basis for nickel based superalloys. For most nickel based superalloys, strengthening mechanisms include both solid solution hardening and precipitation hardening. W is a vital element to create solid solution hardening and to improve the creep strength. In spite of its wide usage to strengthening of high temperature alloys, the mechanisms for solid solution hardening are not fully quantified. From the assumption that it is due to the attraction of solute atoms to dislocations and formation of Cottrell atmosphere to slow down the motion of dislocations, a fundamental model has been formulated previously. In the present paper, the model is expanded by taking the stacking fault energy and strain induced vacancies into account. Important parameters in the model are the variation of the lattice constant and the shear modulus with alloying content. Models for these variations have been formulated as a function of solute content. Another important parameter is the maximum interaction energy between the dislocations and the solutes. The model can satisfactorily predict both the large difference in creep rate between pure Ni and Ni-W alloys and the comparatively smaller differences between the three investigated Ni-2W, Ni-4W and Ni-6W alloys.


1997 ◽  
Vol 473 ◽  
Author(s):  
Young-Chang Joo ◽  
Peter Müllner ◽  
Shefford P. Baker ◽  
Eduard Arzt

ABSTRACTPrecipitation and solid solution hardening have been studied in Al-Cu thin films with Cu content ranging from 0 to 2 wt%. We have changed the precipitate and dislocation structures of films having different Cu concentrations by varying the heat treatments prior to mechanical testing. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling. Al-Cu alloy films, however, showed larger stresses in tension than in compression. The compressive flow stress during heating could be changed by a factor of five by the initial heat treatment, but the differences disappeared above 250°C. Upon cooling from 480°C, solution hardening as well as precipitation hardening was observed in the Al-Cu films. Solution hardening is independent of Cu concentration, but for precipitation hardening, both the magnitude and the temperature range in which the mechanism is effective are sensitive to the Cu concentration. The microstructure was observed using transmission electron microscopy. The mechanical behavior is consistent with interactions between dislocations and precipitates which arise due to constraints on the film by the substrate.


Author(s):  
Stuart A. Maloy

MoSi2 has recently been investigated as a potential material for high temperature structural applications. It has excellent oxidation resistance up to 1700°C, a high melting temperature, 2030°C, and a brittle-to-ductile transition temperature at 900-1000°C. WSi2 is isomorphous with MoSi2 and has a body-centered tetragonal unit cell of the space group 14/mmm. The lattice parameters are a=3.20 Å and c=7.84 Å for MoSi2 and a=3.21 Å and c=7.88 Å for WSi2. Therefore, WSi2 was added to MoSi2 to improve its strength via solid solution hardening. The purpose of this study was to investigate the slip systems in polycrystalline MoSi2/WSi2 alloys.


2001 ◽  
Vol 44 (6) ◽  
pp. 879-884 ◽  
Author(s):  
A.A Sharif ◽  
A Misra ◽  
J.J Petrovic ◽  
T.E Mitchell

1980 ◽  
Vol 15 (1) ◽  
pp. 253-254 ◽  
Author(s):  
M. Z. Butt ◽  
P. Feltham

Sign in / Sign up

Export Citation Format

Share Document