high temperature alloys
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 40)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
pp. 110050
Author(s):  
T. Sand ◽  
S. Bigdeli ◽  
M. Sattari ◽  
J. Andersson ◽  
M. Hättestrand ◽  
...  

2021 ◽  
Vol 2048 (1) ◽  
pp. 012018
Author(s):  
Q Wang ◽  
W Zheng ◽  
H Yin ◽  
S Li ◽  
X He ◽  
...  

Abstract The primary coolant circuit of the high temperature gas-cooled reactor (HTGR) contains trace impurities. A nickel base alloy would corrode when exposed to an atmosphere at a high temperature and for a long time. The protective oxide scale formed by chromium is an important factor to prevent severe corrosion of high temperature alloys. Corrosion tests were conducted on Inconel 617, Incoloy 800H, Hastelloy X, and T-22, which are commonly used in the steam generator of HTGR. The alloys were exposed to helium with trace impurities for 48 hours at 950°C. The corrosion results were analyzed by weighing, scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA). All the four alloys formed oxide scales in this atmosphere, but they differ in the capacity to resist corrosion. Therefore, the carbon transfer phenomenon observed in this experiment varies for the different alloys. In addition, for Cr in Inconel617, the expected depletion phenomenon near the corrosion layer occurred, which is consistent with the results from theoretical analysis.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5075
Author(s):  
Manjunath Patil ◽  
Marko Djokic ◽  
Kim Verbeken ◽  
Marie-Francoise Reyniers ◽  
Kevin Van Geem

In conventional steam cracking feedstocks, contaminants such as sulfur, phosphine, and heavy metal components, present in trace levels, are believed to affect coke formation on high temperature alloys. To gain an understanding of the role of phosphine coking rates on 25/35, CrNi and Al-containing reactor materials were determined in a plug flow reactor during cracking of a propane feedstock doped with ppb levels of PH3 in the presence of DMDS. The presence of phosphine decreased the asymptotic coking rates by more than 20%, while it had a smaller influence on the catalytic coking rate. The coking rate was more severely reduced for the 25/35 CrNi alloy in comparison to the Al-containing alloy. The ppm levels of phosphine did not affect the olefin yields nor the production of undesired carbon monoxide. The morphology of the coked alloys were studied using an off-line Scanning Electron Microscope with Energy Dispersive X-ray detector (SEM with EDX) images of coked coupons. Two types of coke morphology are observed, i.e., filamentous coke with DMDS as an additive and globular coke in the presence of phosphine. The effect of phosphine on the material has a positive impact on the oxide scale homogeneity of 25/35 CrNi alloy, whereas the Al-containing alloy remained unchanged.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jian Peng ◽  
Rishi Pillai ◽  
Marie Romedenne ◽  
Bruce A. Pint ◽  
Govindarajan Muralidharan ◽  
...  

AbstractAlthough of practical importance, there is no established modeling framework to accurately predict high-temperature cyclic oxidation kinetics of multi-component alloys due to the inherent complexity. We present a data analytics approach to predict the oxidation rate constant of NiCr-based alloys as a function of composition and temperature with a highly consistent and well-curated experimental dataset. Two characteristic oxidation models, i.e., a simple parabolic law and a statistical cyclic oxidation model, have been chosen to numerically represent the high-temperature oxidation kinetics of commercial and model NiCr-based alloys. We have successfully trained machine learning (ML) models using highly ranked key input features identified by correlation analysis to accurately predict experimental parabolic rate constants (kp). This study demonstrates the potential of ML approaches to predict oxidation kinetics of alloys over wide composition and temperature ranges. This approach can also serve as a basis for introducing more physically meaningful ML input features to predict the comprehensive cyclic oxidation behavior of multi-component high-temperature alloys with proper constraints based on the known underlying mechanisms.


2021 ◽  
pp. 161441
Author(s):  
Yuantao Zhao ◽  
Rui Wang ◽  
Yanle Sun ◽  
Lianbo Wang ◽  
Xinfeng Wu ◽  
...  

2021 ◽  
Author(s):  
Yuxiang Zhang ◽  
Ryan J. Buntain ◽  
Jacob D. Edwards ◽  
Boian Alexandrov ◽  
Jorge Penso

2021 ◽  
Vol 2021 (6) ◽  
pp. 772-778
Author(s):  
V. S. Shitikov ◽  
N. P. Kodak ◽  
A. N. Golovkov ◽  
I. I. Kudinov

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1656
Author(s):  
Maria Luisa Grilli ◽  
Daniele Valerini ◽  
Anca Elena Slobozeanu ◽  
Bogdan O. Postolnyi ◽  
Sebastian Balos ◽  
...  

Several applications where extreme conditions occur require the use of alloys often containing many critical elements. Due to the ever increasing prices of critical raw materials (CRMs) linked to their high supply risk, and because of their fundamental and large utilization in high tech products and applications, it is extremely important to find viable solutions to save CRMs usage. Apart from increasing processes’ efficiency, substitution, and recycling, one of the alternatives to preserve an alloy and increase its operating lifetime, thus saving the CRMs needed for its manufacturing, is to protect it by a suitable coating or a surface treatment. This review presents the most recent trends in coatings for application in high temperature alloys for aerospace engines. CRMs’ current and future saving scenarios in the alloys and coatings for the aerospace engine are also discussed. The overarching aim of this paper is to raise awareness on the CRMs issue related to the alloys and coating for aerospace, suggesting some mitigation measures without having the ambition nor to give a complete overview of the topic nor a turnkey solution.


Sign in / Sign up

Export Citation Format

Share Document