A General Method to Study the Co-Existence of Different Hybrid Synchronizations in Fractional-Order Chaotic Systems

Author(s):  
Adel Ouannas ◽  
Samir Bendoukha ◽  
Abdulrahman Karouma ◽  
Salem Abdelmalek

AbstractReferring to incommensurate fractional-order systems, this paper proposes a new type of chaos synchronization by combining full state hybrid function projective synchronization (FSHFPS) and inverse full state hybrid function projective synchronization (IFSHFPS). In particular, based on stability theory of linear integer-order systems and stability theory of linear fractional-order systems, the co-existence of FSHFPS and IFSHFPS between incommensurate fractional chaotic (hyperchaotic) systems is proved. To illustrate the capabilities of the novel approach proposed herein, numerical and simulation results are given.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Ping Zhou ◽  
Rui Ding

A modified function projective synchronization (MFPS) scheme for different dimension fractional-order chaotic systems is presented via fractional order derivative. The synchronization scheme, based on stability theory of nonlinear fractional-order systems, is theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-15
Author(s):  
Ping Zhou ◽  
Xiao-You Yang

An adaptive hybrid function projective synchronization (AHFPS) scheme between different fractional-order chaotic systems with uncertain system parameter is addressed in this paper. In this proposed scheme, the drive and response system could be synchronized up to a vector function factor. This proposed scheme is different with the function projective synchronization (FPS) scheme, in which the drive and response system could be synchronized up to a scaling function factor. The adaptive controller and the parameter update law are gained. Two examples are presented to demonstrate the effectiveness of the proposed scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Zhou ◽  
Rui Ding ◽  
Yu-xia Cao

A hybrid projective synchronization scheme for two identical fractional-order chaotic systems is proposed in this paper. Based on the stability theory of fractional-order systems, a controller for the synchronization of two identical fractional-order chaotic systems is designed. This synchronization scheme needs not to absorb all the nonlinear terms of response system. Hybrid projective synchronization for the fractional-order Chen chaotic system and hybrid projective synchronization for the fractional-order hyperchaotic Lu system are used to demonstrate the validity and feasibility of the proposed scheme.


2021 ◽  
Vol 5 (2) ◽  
pp. 275-280
Author(s):  
Dongmo ERİC DONALD ◽  
Cyrille AİNAMON ◽  
Alex Stéphane KEMNANG TSAFACK ◽  
Nasr SAEED ◽  
Victor KAMDOUM ◽  
...  

Author(s):  
Cristina Rodriguez-Sanchez ◽  
Susana Borromeo ◽  
Juan Hernandez-Tamames

The appearance of concepts such as “Ambient Intelligent”, “Ubiquitous Computing” and “Context-Awareness” is causing the development of a new type of services called “Context-Aware Services” that in turn may affect users of mobile communications. This technology revolution is a a complex process because of the heterogeneity of contents, devices, objects, technologies, resources and users that can coexist at the same local environment. The novel approach of our work is the development of a ”Local Infrastructure” in order to provide intelligent, transparent and adaptable services to the user as well as to solve the problem of local context control. Two contributions will be presented: conceptual model for developing a local infrastructure and an architecture design to control the service offered by the local infrastructure. This infrastructure proposed consists of an intelligent device network to link the personal portable device with the contextual services. The device design is modular, flexible, scalable, adaptable and reconfigurable remotely in order to tolerate new demanding services whenever are needed. Finally, the result suggests that we will be able to develop a wide range of new and useful applications, not conceived at origin.


Sign in / Sign up

Export Citation Format

Share Document