scholarly journals Optimization of microwave-assisted extraction of flavonoids from young barley leaves

2017 ◽  
Vol 31 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Tian Gao ◽  
Min Zhang ◽  
Zhongxiang Fang ◽  
Qifeng Zhong

AbstractA central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g−1microwave power and liquid-solid ratio 34.02 ml g−1for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8060-8081
Author(s):  
Jie Xu ◽  
Jianjun Wu ◽  
Juan Qi ◽  
Juan Li ◽  
Yongju Liu ◽  
...  

Flavonoids were extracted from Phyllostachys heterocycla leaves by adopting microwave-assisted extraction technology. Based on the single factor experiment and Plackett-Burman design results, the extraction process of flavonoids was further optimized using the response surface methodology. The optimum conditions were as follows: an ethanol concentration of 78.1%, an extraction time of 24.9 min, and a microwave power of 559 W. Under these conditions, the extraction yield of flavonoids was 4.67%, which was in close proximity to the predicted value (4.70%) and higher than the extraction yield from traditional Soxhlet extraction (3.35%). Moreover, the possible extraction mechanisms of these two extraction methods were further derived to explain why the microwave-assisted extraction of flavonoids was more efficient compared with traditional Soxhlet extraction. Ultimately, the antioxidant activities in vitro of flavonoids from Phyllostachys heterocycla leaves were evaluated via DPPH and ABTS radical scavenging assay. The flavonoids from Phyllostachys heterocycla leaves exhibited excellent antioxidant activities in vitro and Phyllostachys heterocycla leaves could be a new natural source for developing antioxidants. Overall, the findings of this research could provide a theoretical reference for the further comprehensive development and utilization of bamboo resources.


2011 ◽  
Vol 236-238 ◽  
pp. 309-312
Author(s):  
Na Li ◽  
Yong Qiang Mao

A simple and rapid microwave assisted extraction (MAE) technique for the extraction of flavonoids from the leaves of Syringa oblatewas developed. The influence of several extraction variabes on extraction yield of flavonoids were discussed. The optimum extraction conditions obtained were: 50% ethanol solution, 480 W microwave power, 6 min extraction time and 20:1 (mL/g) as the ratio of solvent volume to sample weight. Compared with conventional extraction methods, MAE is an efficient and rapid method for the extraction of the flavonoids from the leaves of Syringa oblate.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2212
Author(s):  
Md Saifullah ◽  
Rebecca McCullum ◽  
Quan Van Vuong

The aromatic herb lemon myrtle is a good source of polyphenols, with high antioxidant and antimicrobial capacity. In this study, the green extraction technique microwave-assisted extraction (MAE) was applied and the extraction parameters were optimized using response surface methodology (RSM) to maximize the extraction yield of phenolic compound and antioxidant properties. Then, it was compared with other popular novel and conventional extraction techniques including ultrasound-assisted extraction (UAE) and shaking water bath (SWB) to identify the most effective technique for extraction of phenolic compounds from lemon myrtle. The results showed that the MAE parameters including radiation time, power, and sample to solvent ratio had a significant influence on the extraction yield of phenolic compounds and antioxidant capacity. The optimal MAE conditions were radiation time of 6 min, microwave power of 630 W, and sample to solvent ratio of 6 g/100 mL. Under optimal conditions, MAE dry extract had similar levels of total phenolic compounds (406.67 ± 8.57 mg GAE/g DW), flavonoids (384.57 ± 2.74 mg CE/g DW), proanthocyanidins (336.54 ± 7.09 mg CE/g DW), antioxidant properties, and antibacterial properties against (Staphylococcus lugdunensis and Bacillus cereus) with the other two methods. However, MAE is eight-times quicker and requires six-times less solvent volume as compared to UAE and SWB. Therefore, MAE is recommended for the extraction of polyphenols from lemon myrtle leaf.


2013 ◽  
Vol 62 (3) ◽  
Author(s):  
Binta Jume Hadi ◽  
Mohd Marsin Sanagi ◽  
Wan Aini Wan Ibrahim ◽  
Shajarahtunnur Jamil ◽  
Mohammed Abdullahi Mu’azu

Conventional methods for the extraction of natural products from plant are characterised by the consumption of large volumes of solvent, energy, lengthy extraction procedures and the potentially deleterious degradation of labile compounds. In the last two decades there has been an increasing demand for new extraction techniques, amenable to automation, with shortened extraction times, reduced organic solvent consumption, prevention pollution in analytical laboratories and reducing sample preparation costs. Unmodified domestic microwave oven is used in the extraction of phenolicsfrom C. domestica Val. using water as solvent. The Microwave Assisted Extraction produced a better yield of crude extract of 48 mg compared to Soxhlet extraction methods with only an extraction yield 3.4 mg. Effects of extraction time, microwave power and solvent volume are evaluated on the extraction of phenolic compounds.


2012 ◽  
Vol 518-523 ◽  
pp. 430-435 ◽  
Author(s):  
Hai Rong Guo ◽  
Shao Ying Ma ◽  
Xiao Fei Wang ◽  
Er Fang Ren ◽  
Yuan Yuan Li

Microwave-assisted extraction (MAE) was used to extract chlorophylls from filter mud. Ethanol was used as the solvent. The optimal conditions for the MAE of chlorophylls were concluded from the study as the irradiation time, 50 s, the ratio of liquid to solid, 8:1 (mL/g), the extraction temperature, 40 °C, and the extraction time, 60 min. Compared with conventional extraction, the MAE of chlorophylls from the filter mud was more effective. The extraction time for MAE was 60 min with 0.277 mg/g chlorophyll yield, while conventional extraction needed 240 min with only about 0.259 mg/g chlorophyll yield. The Ultraviolet Absorption Spectra of the extracted chlorophylls showed that there was a strong absorption peak at about 663 nm. C=N, Mg-N and C-N was not seen existed from the infrared spectroscopy probably because that the mixed extracts were not purified and the chlorophyll content was less.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hui Wang ◽  
Xiaodi Ma ◽  
Qibin Cheng ◽  
Xiaoli Xi ◽  
Liwei Zhang

Deep eutectic solvents (DESs) have attracted significant attention as green media for the extraction and separation of natural compounds from Chinese medicine. In this study, a hydrophobic DESs-based microwave-assisted extraction (MAE) was successfully used to efficiently extract baicalin from Scutellaria baicalensis Georgi. Firstly, DecA: N4444-Cl (DES-1 , molar ratio 1 : 2) was screened and selected as the most appropriate DES by comparing the extraction yield in different hydrophobic DESs. Based on the extraction yield of baicalin, response surface methodology (RSM) was employed to model and optimize the parameters (extraction temperature, liquid-solid ratio, and extraction time). Furthermore, the maximum yield of 106.96 mg·g−1 was achieved under optimum conditions in DES-containing aqueous solutions (33 vol% water content), which reached a similar level that was conducted using the pharmacopoeia procedure (104.94 mg·g−1). These results indicated that the proposed method is an excellent alternative for the extraction of baicalin.


2021 ◽  
Vol 302 ◽  
pp. 01009
Author(s):  
Chanatip Dejkajorn ◽  
Panawan Suttiarporn ◽  
Hussanai Sukkathanyawat ◽  
Kittisak Wichianwat ◽  
Saichon Sriphan ◽  
...  

Spent bleaching earth (SBE) which is generated from bleaching process is a valuable industrial waste of edible vegetable oil production because of residual edible vegetable oil absorbed. The residual oil in spent bleaching earth can be recovered and reused for application in the industries such as the production of biodiesel and lubricant. Currently, microwave-assisted extraction (MAE) technique is widely used because this method has a shorter extraction time and less solvent consumption when compared with traditional methods. In this study, MAE combined with solvent reflux was optimized using solvent screening experiments and response surface methodology (RSM) to obtain the highest yield of MAE extraction of residual soybean oil from spent bleaching earth. The extraction yield of residual soybean oil obtained from selected solvent were hexane-ethanol mixture (2:1 v/v, 10.19%) > hexane-ethanol mixture (1:1 v/v, 10.00%) >hexane-ethanol mixture (1:2 v/v, 9.98%) > hexane-ethanol mixture (1:3 v/v, 9.83%) > hexane-ethanol mixture (3:1 v/v, 8.59%) > hexane (8.17%) > acetone (7.73%). The regression coefficient (R-squared = 0.9852) expresses the accuracy of the regression and indicates the relationship between experimental data and predicted result, with high regression coefficient close to 1, which is remarkably desired. The experiment conditions for optimal MAE extraction of residual soybean oil from SBE were hexane-ethanol mixture (2:1 v/v), liquid to solid ratio 15.56:1 mL/g, extraction time 12.22 min, and microwave power 350 W. Under such conditions, the highest predicted value of the extraction yield of residual soybean oil was 10.43%.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 559
Author(s):  
Sónia J. Amarante ◽  
Marcelo D. Catarino ◽  
Catarina Marçal ◽  
Artur M. S. Silva ◽  
Rita Ferreira ◽  
...  

Microwave-assisted extraction (MAE) was carried out to maximize the extraction of phlorotannins from Fucus vesiculosus using a hydroethanolic mixture as a solvent, as an alternative to the conventional method with a hydroacetonic mixture. Optimal MAE conditions were set as ethanol concentration of 57% (v/v), temperature of 75 °C, and time of 5 min, which allowed a similar recovery of phlorotannins from the macroalgae compared to the conventional extraction. While the phlorotannins richness of the conventional extract was slightly superior to that of MAE (11.1 ± 1.3 vs. 9.8 ± 1.8 mg PGE/g DWextract), both extracts presented identical phlorotannins constituents, which included, among others, tetrafucol, pentafucol, hexafucol, and heptafucol structures. In addition, MAE showed a moderate capacity to scavenge ABTS•+ (IC50 of 96.0 ± 3.4 µg/mL) and to inhibit the activity of xanthine oxidase (IC50 of 23.1 ± 3.4 µg/mL) and a superior ability to control the activity of the key metabolic enzyme α-glucosidase compared to the pharmaceutical drug acarbose.


Sign in / Sign up

Export Citation Format

Share Document