Recounting the Number of Rises, Levels, and Descents in Finite Set Partitions

Integers ◽  
2010 ◽  
Vol 10 (2) ◽  
Author(s):  
Mark Shattuck

AbstractA finite set partition is said to have a

10.37236/2550 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Adam M Goyt ◽  
Brady L Keller ◽  
Jonathan E Rue

We study q-analogues of k-Fibonacci numbers that arise from weighted tilings of an $n\times1$ board with tiles of length at most k.  The weights on our tilings arise naturally out of distributions of permutations statistics and set partitions statistics.  We use these q-analogues to produce q-analogues of identities involving k-Fibonacci numbers.  This is a natural extension of results of the first author and Sagan on set partitions and the first author and Mathisen on permutations.  In this paper we give general q-analogues of k-Fibonacci identities for arbitrary weights that depend only on lengths and locations of tiles.  We then determine weights for specific permutation or set partition statistics and use these specific weights and the general identities to produce specific identities.


10.37236/392 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Martin Rubey ◽  
Christian Stump

In this article, we investigate bijections on various classes of set partitions of classical types that preserve openers and closers. On the one hand we present bijections for types $B$ and $C$ that interchange crossings and nestings, which generalize a construction by Kasraoui and Zeng for type $A$. On the other hand we generalize a bijection to type $B$ and $C$ that interchanges the cardinality of a maximal crossing with the cardinality of a maximal nesting, as given by Chen, Deng, Du, Stanley and Yan for type $A$. For type $D$, we were only able to construct a bijection between non-crossing and non-nesting set partitions. For all classical types we show that the set of openers and the set of closers determine a non-crossing or non-nesting set partition essentially uniquely.


10.37236/1992 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Eric Marberg

A labeled set partition is a partition of a set of integers whose arcs are labeled by nonzero elements of an abelian group $\mathbb{A}$. Inspired by the action of the linear characters of the unitriangular group on its supercharacters, we define a group action of $\mathbb{A}^n$ on the set of $\mathbb{A}$-labeled partitions of an $(n+1)$-set. By investigating the orbit decomposition of various families of set partitions under this action, we derive new combinatorial proofs of Coker's identity for the Narayana polynomial and its type B analogue, and establish a number of other related identities. In return, we also prove some enumerative results concerning André and Neto's supercharacter theories of type B and D.


10.37236/1987 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Karen Meagher ◽  
Lucia Moura ◽  
Brett Stevens

A Sperner partition system is a system of set partitions such that any two set partitions $P$ and $Q$ in the system have the property that for all classes $A$ of $P$ and all classes $B$ of $Q$, $A \not\subseteq B$ and $B \not\subseteq A$. A $k$-partition is a set partition with $k$ classes and a $k$-partition is said to be uniform if every class has the same cardinality $c=n/k$. In this paper, we prove a higher order generalization of Sperner's Theorem. In particular, we show that if $k$ divides $n$ the largest Sperner $k$-partition system on an $n$-set has cardinality ${n-1 \choose n/k-1}$ and is a uniform partition system. We give a bound on the cardinality of a Sperner $k$-partition system of an $n$-set for any $k$ and $n$.


10.37236/8241 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Megan Ly

Schur–Weyl duality is a fundamental framework in combinatorial representation theory. It intimately relates the irreducible representations of a group to the irreducible representations of its centralizer algebra. We investigate the analog of Schur–Weyl duality for the group of unipotent upper triangular matrices over a finite field.  In this case, the character theory of these upper triangular matrices is "wild" or unattainable. Thus we employ a generalization, known as supercharacter theory, that creates a striking variation on the character theory of the symmetric group with combinatorics built from set partitions. In this paper, we present a combinatorial formula for calculating a restriction and induction of supercharacters based on statistics of set partitions and seashell inspired diagrams. We use these formulas to create a graph that encodes the decomposition of a tensor space, and develop an analog of Young tableaux, known as shell tableaux, to index paths in this graph. 


10.37236/8223 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jhon B. Caicedo ◽  
Victor H. Moll ◽  
José L. Ramírez ◽  
Diego Villamizar

Extensions of a set partition obtained by imposing bounds on the size of the parts is examined. Arithmetical and combinatorial properties of these sequences are established.


10.37236/8786 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Giampiero Chiaselotti ◽  
Tommaso Gentile ◽  
Federico Infusino

We call a quadruple $\mathcal{W}:=\langle F,U,\Omega,\Lambda \rangle$, where $U$ and $\Omega$ are two given non-empty finite sets, $\Lambda$ is a non-empty set and $F$ is a map having domain $U\times \Omega$ and codomain $\Lambda$, a pairing on $\Omega$. With this structure we associate a set operator $M_{\mathcal{W}}$ by means of which it is possible to define a preorder $\ge_{\mathcal{W}}$ on the power set $\mathcal{P}(\Omega)$ preserving set-theoretical union. The main results of our paper are two representation theorems. In the first theorem we show that for any finite lattice $\mathbb{L}$ there exist a finite set $\Omega_{\mathbb{L}}$ and a pairing $\mathcal{W}$ on $\Omega_\mathbb{L}$ such that the quotient of the preordered set $(\mathcal{P}(\Omega_\mathbb{L}), \ge_\mathcal{W})$ with respect to its symmetrization is a lattice that is order-isomorphic to $\mathbb{L}$. In the second result, we prove that when the lattice $\mathbb{L}$ is endowed with an order-reversing involutory map $\psi: L \to L$ such that $\psi(\hat 0_{\mathbb{L}})=\hat 1_{\mathbb{L}}$, $\psi(\hat 1_{\mathbb{L}})=\hat 0_{\mathbb{L}}$, $\psi(\alpha) \wedge \alpha=\hat 0_{\mathbb{L}}$ and $\psi(\alpha) \vee \alpha=\hat 1_{\mathbb{L}}$, there exist a finite set $\Omega_{\mathbb{L},\psi}$ and a pairing on it inducing a specific poset which is order-isomorphic to $\mathbb{L}$.


10.37236/190 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Adam M. Goyt ◽  
David Mathisen

In a recent paper, Goyt and Sagan studied distributions of certain set partition statistics over pattern restricted sets of set partitions that were counted by the Fibonacci numbers. Their study produced a class of $q$-Fibonacci numbers, which they related to $q$-Fibonacci numbers studied by Carlitz and Cigler. In this paper we will study the distributions of some Mahonian statistics over pattern restricted sets of permutations. We will give bijective proofs connecting some of our $q$-Fibonacci numbers to those of Carlitz, Cigler, Goyt and Sagan. We encode these permutations as words and use a weight to produce bijective proofs of $q$-Fibonacci identities. Finally, we study the distribution of some of these statistics on pattern restricted permutations that West showed were counted by even Fibonacci numbers.


10.37236/715 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Anisse Kasraoui

We find exact and asymptotic formulas for the average values of several statistics on set partitions: of Carlitz's $q$-Stirling distributions, of the numbers of crossings in linear and circular representations of set partitions, of the numbers of overlappings and embracings, and of the numbers of occurrences of a 2-pattern.


10.37236/4987 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Cheng Yeaw Ku ◽  
Kok Bin Wong

A set partition of $[n]$ is a collection of pairwise disjoint nonempty subsets (called blocks) of $[n]$ whose union is $[n]$. Let $\mathcal{B}(n)$ denote the family of all set partitions of $[n]$. A family $\mathcal{A} \subseteq \mathcal{B}(n)$ is said to be $m$-intersecting if any two of its members have at least $m$ blocks in common. For any set partition $P \in \mathcal{B}(n)$, let $\tau(P) = \{x: \{x\} \in P\}$ denote the union of its singletons. Also, let $\mu(P) = [n] -\tau(P)$ denote the set of elements that do not appear as a singleton in $P$. Let \begin{align*} {\mathcal F}_{2t} & =\left\{P \in \mathcal{B}(n)\ : \ \vert \mu (P)\vert\leq t\right\};\\{\mathcal F}_{2t+1}(i_0) & =\left\{P \in \mathcal{B}(n)\ : \ \vert\mu (P)\cap ([n]\setminus \{i_0\})\vert\leq t\right\}.\end{align*} In this paper, we show that for $r\geq 3$, there exists a $n_0=n_0(r)$ depending on $r$ such that for all $n\geq n_0$, if $\mathcal{A} \subseteq\mathcal{B}(n)$ is $(n-r)$-intersecting, then \[ |\mathcal{A}| \leq \begin{cases} \vert {\mathcal F}_{2t} \vert, & \text{if $r=2t$};\\ \vert {\mathcal F}_{2t+1}(1) \vert, & \text{if $r=2t+1$}.\end{cases}\]Moreover, equality holds if and only if \[ \mathcal{A}= \begin{cases} {\mathcal F}_{2t}, & \text{if $r=2t$};\\ {\mathcal F}_{2t+1}(i_0), & \text{if $r=2t+1$},\end{cases}\]for some $i_0\in [n]$.


Sign in / Sign up

Export Citation Format

Share Document