Evaluation of multipath mitigation performance using signal-to-noise ratio (SNR) based signal selection methods

2021 ◽  
Vol 15 (1) ◽  
pp. 75-85
Author(s):  
Valanon Uaratanawong ◽  
Chalermchon Satirapod ◽  
Toshiaki Tsujii

AbstractSatellite signal strength sometimes decreases when multipath exists. This effect reduces signal quality and can lead to a large static positioning error, even the survey-grade receivers are used. Three signal selection methods based on signal-to-noise ratio (SNR) measurements were proposed. The first was the conventional method, based on elevation-dependent average SNR, the second used a moving average of SNR fluctuation and the third method used NLOS exclusion based on SNR residual clustering by the K-means algorithm. To evaluate the positioning accuracy improvement, the static 1 Hz single-point positioning (SPP) test was performed in real-time in two different multipath environments using both dual and quad- constellation GNSS receivers. Trimble and CHC receivers were used at each point to examine the effect on each measurement. Results indicated that the three proposed methods mainly reduced multipath error in horizontal direction compared with the normal SPP.

Author(s):  
Ying-Jia Lin ◽  
Ying-Cheng Su ◽  
Paul C.-P. Chao ◽  
Jia-Yu Zhang ◽  
Eka Fitrah Pribadi

Abstract A capacitive sensing circuit including electrodes for a 7-inch ultra-thin flexible on-cell touch panel has been designed. Implementing code-division multiple sensing (CDMS) with Walsh transform to scan Tx electrodes is chosen to improve the signal-to-noise ratio (SNR). The algorithm applies to field programmable logic array (FPGA). The sensing readout algorithm is applied to work on 4 Tx transmitter electrodes and 4 Rx sensing electrodes. The switched-capacitor (SC) circuit is applied to avoid disturbing sample signal from parasitic capacitance and enlarge the voltage difference from capacitance changes of the touch panel. 12-bit ADC to transfer the front-end analog signal to digital code. The digital part adopts a correction algorithm to eliminate the background value of the panel, the moving average algorithm has an adjustable signal-to-noise ratio function, and the Walsh conversion demodulation algorithm improves the touch report rate to achieve high SNR with up-to 34 dB.


2021 ◽  
Vol 7 (1) ◽  
pp. 15-18
Author(s):  
Surdiyah Asriningrum ◽  
Khaerul Ansory ◽  
Putra Tri Hasan

Background: The research was analyzing digital image quality and estimation dose patient by using  Signal to Noise Ratio (SNR) on Computed Radiography. SNR can be used for analyzing digital image spatial resolution and estimation dose accurately. The aims of this study to determine the influence of exposure factors on image quality and estimation dose patient.Methods: This type of research is a quantitative method with an experimental study. Direct experiments in August 2020 assessment with a sample of 9 adults posteroanterior chest photo with the average age of 20-50 years old with an average body weight of 50-69 kilograms. Results: The measurement results showed that the digital images will be analyzed by SNR, so it can be determined the optimum exposed factor of the highest SNR value and dose radiation. From the analysis, the highest SNR value at 121 kV, current 1 mAs, the lower dose radiation at 121 kV, current 0,9 mAs.Conclusions: There was an influence variation of an exposed factor on the quality of the image and dose to the patient.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


1979 ◽  
Vol 10 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Veronica Smyth

Three hundred children from five to 12 years of age were required to discriminate simple, familiar, monosyllabic words under two conditions: 1) quiet, and 2) in the presence of background classroom noise. Of the sample, 45.3% made errors in speech discrimination in the presence of background classroom noise. The effect was most marked in children younger than seven years six months. The results are discussed considering the signal-to-noise ratio and the possible effects of unwanted classroom noise on learning processes.


2020 ◽  
Vol 63 (1) ◽  
pp. 345-356
Author(s):  
Meital Avivi-Reich ◽  
Megan Y. Roberts ◽  
Tina M. Grieco-Calub

Purpose This study tested the effects of background speech babble on novel word learning in preschool children with a multisession paradigm. Method Eight 3-year-old children were exposed to a total of 8 novel word–object pairs across 2 story books presented digitally. Each story contained 4 novel consonant–vowel–consonant nonwords. Children were exposed to both stories, one in quiet and one in the presence of 4-talker babble presented at 0-dB signal-to-noise ratio. After each story, children's learning was tested with a referent selection task and a verbal recall (naming) task. Children were exposed to and tested on the novel word–object pairs on 5 separate days within a 2-week span. Results A significant main effect of session was found for both referent selection and verbal recall. There was also a significant main effect of exposure condition on referent selection performance, with more referents correctly selected for word–object pairs that were presented in quiet compared to pairs presented in speech babble. Finally, children's verbal recall of novel words was statistically better than baseline performance (i.e., 0%) on Sessions 3–5 for words exposed in quiet, but only on Session 5 for words exposed in speech babble. Conclusions These findings suggest that background speech babble at 0-dB signal-to-noise ratio disrupts novel word learning in preschool-age children. As a result, children may need more time and more exposures of a novel word before they can recognize or verbally recall it.


Sign in / Sign up

Export Citation Format

Share Document