Oppositional Gravitational Search Algorithm and Artificial Neural Network-based Classification of Kidney Images

2018 ◽  
Vol 29 (1) ◽  
pp. 485-496 ◽  
Author(s):  
S.M.K. Chaitanya ◽  
P. Rajesh Kumar

Abstract Ultrasound (US) imaging has been broadly utilized as part of kidney diagnosis because of its ability to show structural abnormalities like cysts, stones, and infections as well as information about kidney function. The main aim of this research is to effectively classify normal and abnormal kidney images through US based on the selection of relevant features. In this study, abnormal kidney images were classified through gray-scale conversion, region-of-interest generation, multi-scale wavelet-based Gabor feature extraction, probabilistic principal component analysis-based feature selection and adaptive artificial neural network technique. The anticipated method is executed in the working platform of MATLAB, and the results were analyzed and contrasted. Results show that the proposed approach had 94% accuracy and 100% specificity. In addition, its false-acceptance rate is 0%, whereas that of existing methods is not <27%. This shows the precise prediction level of the proposed approach, compared with that of existing methods.

2018 ◽  
Vol 27 (08) ◽  
pp. 1850132
Author(s):  
T. A. Balarajuswamy ◽  
R. Nakkeeran

The projected method explains about the problems occurred in the combination of the MEMS switches and the complete scheme plan is resolved through choosing the finest devise limits for the plan. The devise limits, namely, length of beam, width of beam, torsion arm length, switch thickness, holes and gap were measured. At this point, the finest value of the devise limit is forecast by the aid of artificial neural network (ANN). Furthermore, the method contains the optimization method of Gravitational Search Algorithm (GSA) to optimize the input signal and so dropping the Mean Square Error (MSE). The complete scheme is executed in the operational platform of MATLAB and the outcomes were examined.


2017 ◽  
Vol 14 (9) ◽  
pp. 095601 ◽  
Author(s):  
Huimin Sun ◽  
Yaoyong Meng ◽  
Pingli Zhang ◽  
Yajing Li ◽  
Nan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document